Build a RAG System
Learn how to build a Retrieval-Augmented Generation (RAG) system with DSPy Code.
Overview
This tutorial will guide you through building a RAG system that can answer questions using retrieved context from a knowledge base.
Step 1: Start DSPy Code
Step 2: Initialize Project
Step 3: Connect to a Model
Step 4: Create the RAG System
Describe what you want to build:
Or use the slash command:
Step 5: Review Generated Code
DSPy Code will generate something like:
import dspy
class RAGQA(dspy.Module):
"""Question answering with retrieval augmentation."""
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_answer = dspy.ChainOfThought(
"context, question -> reasoning -> answer"
)
def forward(self, question):
passages = self.retrieve(question)
context = "\n\n".join([p.text for p in passages])
return self.generate_answer(context=context, question=question)
Step 6: Save the Code
Step 7: Set Up Retrieval
Configure your retrieval system:
import dspy
# Configure your retrieval system
# For example, with a vector store:
from dspy.retrieve import ChromadbRM
retriever = ChromadbRM(
collection_name="knowledge_base",
persist_directory="./chroma_db"
)
# Update the RAG module to use your retriever
class RAGQA(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = retriever
self.generate_answer = dspy.ChainOfThought(
"context, question -> reasoning -> answer"
)
def forward(self, question):
passages = self.retrieve(question, k=num_passages)
context = "\n\n".join([p.text for p in passages])
return self.generate_answer(context=context, question=question)
Step 8: Test the System
Step 9: Optimize (Optional)
Create training data:
Then optimize:
Complete Example
import dspy
from dspy.retrieve import ChromadbRM
# Configure language model
lm = dspy.LM(model="ollama/llama3.1:8b")
dspy.configure(lm=lm)
# Set up retrieval
retriever = ChromadbRM(
collection_name="knowledge_base",
persist_directory="./chroma_db"
)
# Create RAG module
class RAGQA(dspy.Module):
"""Question answering with retrieval."""
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = retriever
self.generate_answer = dspy.ChainOfThought(
"context, question -> reasoning -> answer"
)
def forward(self, question):
passages = self.retrieve(question, k=num_passages)
context = "\n\n".join([p.text for p in passages])
return self.generate_answer(context=context, question=question)
# Use the system
rag = RAGQA()
result = rag(question="What is DSPy?")
print(result.answer)
Next Steps
- Add more sophisticated retrieval strategies
- Implement multi-hop reasoning
- Optimize with GEPA
- Deploy to production
For more details, see Optimization