🏗️ System Architecture¶
SuperOpt operates as an optimization layer around autonomous AI agents. This section explains the complete system architecture and how all components work together.
📋 Core Design Principles¶
SuperOpt Component Architecture¶
SuperOpt's optimization engine consists of five specialized components that work together to provide comprehensive environment optimization:
SuperController
CoordinatorAnalyzes execution traces and routes failures to appropriate optimizers
SuperPrompt
Prompt OptimizerEvolutionary optimization of system prompts and instructions
SuperReflexion
Tool RepairSelf-healing tool schema repair and clarification
SuperRAG
Retrieval TuningAdaptive retrieval parameter optimization
SuperMem
Memory ManagementTyped memory with decay and conflict resolution
Outer Optimization Loop¶
SuperOpt runs as an optimization loop surrounding the agent's normal execution:
graph TB
subgraph "SuperOpt Optimization Loop"
subgraph "Agent Execution Loop"
A[Task Input] --> B[Agent Processing]
B --> C[Tool Calls]
C --> D[Results/Output]
end
D --> E[Execution Trace Capture]
E --> F[Failure Diagnosis & Routing]
F --> G[Component Optimization]
G --> H[Environment Updates]
H --> A
end
style A fill:#e1f5fe
style B fill:#bbdefb
style C fill:#90caf9
style D fill:#64b5f6
style E fill:#42a5f5
style F fill:#2196f3
style G fill:#1976d2
style H fill:#1565c0 Environment-as-Target¶
Instead of optimizing model parameters, SuperOpt optimizes the agent's environment:
Φ (Agent Environment) = {
P: Prompts and instructions
T: Tool schemas and constraints
R: Retrieval configuration and strategies
M: Memory entries and learned patterns
}
🔄 Complete Workflow¶
Phase 1: Normal Agent Execution¶
sequenceDiagram
participant U as User
participant A as Agent
participant T as Tools
participant R as Retrieval
participant M as Memory
U->>A: Task Request
A->>R: Query Information
R-->>A: Retrieved Data
A->>M: Check Learned Patterns
M-->>A: Memory Context
A->>T: Execute Tool Calls
T-->>A: Tool Results
A->>U: Final Response Phase 2: Execution Trace Capture¶
graph LR
subgraph "Execution Trace"
TD[Task Description]
TC[Tool Calls & Parameters]
ER[Execution Results]
SF[Success/Failure Status]
PM[Performance Metrics]
end
style TD fill:#e8f5e8
style TC fill:#fff3e0
style ER fill:#fce4ec
style SF fill:#f3e5f5
style PM fill:#e0f2f1 Phase 3: Failure Diagnosis¶
graph TD
ET[Execution Trace] --> SC[SuperController]
SC --> FT{Determine Failure Type}
FT -->|PROMPT| SP[SuperPrompt]
FT -->|TOOL| SR[SuperReflexion]
FT -->|RETRIEVAL| SAG[SuperRAG]
FT -->|MEMORY| SM[SuperMem]
style SC fill:#fff3e0,stroke:#ff9800,stroke-width:3px
style FT fill:#ffebee,stroke:#f44336 Phase 4: Environment Optimization¶
SuperPrompt
PROMPT Failures
- Instruction optimization
- Example generation
- Behavioral constraints
SuperReflexion
TOOL Failures
- Schema clarification
- Constraint addition
- Example provision
SuperRAG
RETRIEVAL Failures
- Parameter tuning
- Query optimization
- Ranking improvement
SuperMem
MEMORY Failures
- Pattern learning
- Conflict resolution
- Confidence tracking
Phase 5: Environment Update¶
graph LR
O[Optimizer] --> UG[Generate Updates]
UG --> VU[Validate Updates]
VU --> AU[Apply to Environment]
AU --> NE[New Environment Φₜ₊₁]
style O fill:#e8f5e8
style UG fill:#fff3e0
style VU fill:#fce4ec
style AU fill:#f3e5f5
style NE fill:#e0f2f1,stroke:#009688,stroke-width:3px Phase 6: Continuous Learning¶
graph TD
A[Agent Task] --> E[Execute with Φₜ]
E --> T[Generate Trace]
T --> O[Optimize Environment]
O --> U[Update to Φₜ₊₁]
U --> N[Next Task with Φₜ₊₁]
N --> E
style A fill:#e1f5fe
style E fill:#bbdefb
style T fill:#90caf9
style O fill:#64b5f6
style U fill:#42a5f5
style N fill:#2196f3 🧩 Component Interactions¶
SuperController (Central Coordinator)¶
Input: ExecutionTrace
Process:
├── Analyze success/failure
├── Classify failure type
├── Route to appropriate optimizer
└── Coordinate environment updates
Output: Failure classification + routing decision
SuperPrompt (Prompt Optimization)¶
Input: ExecutionTrace (PROMPT failure)
Process:
├── Extract prompt-related errors
├── Generate improved instructions
├── Add clarifying examples
└── Update behavioral constraints
Output: Updated PromptConfig
SuperReflexion (Tool Schema Repair)¶
Input: ExecutionTrace (TOOL failure)
Process:
├── Identify tool call errors
├── Analyze schema ambiguities
├── Generate clarifications
└── Add constraint documentation
Output: Updated ToolSchema entries
SuperRAG (Retrieval Optimization)¶
Input: ExecutionTrace (RETRIEVAL failure)
Process:
├── Analyze search failures
├── Adjust retrieval parameters
├── Optimize query strategies
└── Tune ranking algorithms
Output: Updated RetrievalConfig
SuperMem (Memory Management)¶
Input: ExecutionTrace (MEMORY failure)
Process:
├── Identify memory conflicts
├── Add new learned patterns
├── Update confidence scores
└── Apply decay to old entries
Output: Updated MemoryEntry list
🔄 Environment Update Process¶
Update Application¶
# Original environment
environment = AgenticEnvironment(
prompts=PromptConfig(...),
tools={"tool1": ToolSchema(...)},
retrieval=RetrievalConfig(...),
memory=[MemoryEntry(...)]
)
# Optimizer generates updates
updates = optimizer.generate_updates(trace)
# Apply updates to create new environment
new_environment = environment.apply_updates(updates)
Update Types¶
- Prompt Updates: Add instructions, examples, constraints
- Tool Updates: Clarify descriptions, add constraints, provide examples
- Retrieval Updates: Adjust parameters, change strategies
- Memory Updates: Add new patterns, update confidence scores
🛡️ Stability and Safety¶
Update Validation¶
- All updates are validated before application
- Reversible changes prevent permanent damage
- Confidence scoring ensures quality updates
Gradual Application¶
- Updates can be applied with different acceptance rates
- Allows for conservative or aggressive optimization
- Enables A/B testing of improvements
Conflict Resolution¶
- Memory system handles conflicting information
- Retrieval optimization considers multiple strategies
- Tool updates maintain backward compatibility
🔌 Integration Architecture¶
Adapter Pattern¶
SuperOpt connects to agents through adapters:
Supported Frameworks¶
- Aider: Coding assistant integration
- Letta: Memory-enabled agents
- Codex: Code understanding agents
- Custom: Generic adapter for any agent
This architecture makes SuperOpt framework-agnostic while providing deep integration capabilities.