Milvus RAG Demo 🏗️
A comprehensive demonstration of SuperOptiX's RAG capabilities using Milvus vector database for enterprise-grade similarity search and scalable knowledge retrieval.
Overview
This demo showcases how to integrate Milvus - a cloud-native vector database - with SuperOptiX's RAG system to create intelligent agents capable of retrieving and synthesizing information from massive knowledge bases with enterprise-level scalability.
This demo demonstrates:
🏗️ Milvus Vector Database Integration - Enterprise-grade connection to Milvus for scalable vector storage
🌐 Cloud-Native Architecture - Distributed vector search with horizontal scaling capabilities
📈 Massive Scale Operations - Handle millions of vectors with high performance
🔍 Advanced Indexing - Multiple indexing strategies for different use cases
🔄 RAG Pipeline Integration - Complete retrieval-augmented generation workflow
Prerequisites
1. Install SuperOptiX
pip install superoptix
2. Install Milvus Dependencies
pip install pymilvus
3. Set Up Milvus Server
# Using Docker Compose (recommended)
wget https://github.com/milvus-io/milvus/releases/download/v2.5.12/milvus-standalone-docker-compose.yml
docker-compose up -d
4. Install and Serve Model
# Install a model (if not already installed)
super model install llama3.1:8b
# Start Ollama server (if using Ollama backend)
ollama serve
Quick Start
1. Pull the Demo Agent
super agent pull rag_milvus_demo
2. Compile the Agent
super agent compile rag_milvus_demo
3. Run the Demo
super agent run rag_milvus_demo --goal "What are the key features of Milvus and how does it work with SuperOptiX?"
Key Configuration Points:
🔧 Vector Database Setup - Configured to connect to Milvus at localhost:19530
📊 Collection Management - Uses superoptix_knowledge collection for document storage
🎯 Embedding Model - Leverages sentence-transformers/all-MiniLM-L6-v2 for vector generation
⚙️ Search Parameters - Optimized with top_k: 5 and similarity_threshold: 0.7
Playbook Configuration
The demo uses a specialized playbook with Milvus-specific configurations:
rag:
enabled: true
retriever_type: milvus
config:
top_k: 5
chunk_size: 512
chunk_overlap: 50
similarity_threshold: 0.7
vector_store:
embedding_model: sentence-transformers/all-MiniLM-L6-v2
host: localhost
port: 19530
collection_name: superoptix_knowledge
Customization
Modify Milvus Connection
vector_store:
host: your-milvus-host
port: 19530
collection_name: YourCustomCollection
user: your-username # If using authentication
password: your-password
Adjust Search Parameters
config:
top_k: 10 # Retrieve more documents
similarity_threshold: 0.8 # Higher similarity threshold
chunk_size: 1024 # Larger chunks
Configure Collection Schema
vector_store:
schema:
fields:
- name: id
dtype: INT64
is_primary: true
- name: content
dtype: VARCHAR
max_length: 65535
- name: embedding
dtype: FLOAT_VECTOR
dim: 384
Troubleshooting
Connection Issues
- Error: "Connection refused"
- Solution: Ensure Milvus server is running on port 19530
- Check:
curl http://localhost:9091/healthz
Collection Issues
- Error: "Collection not found"
- Solution: Create collection manually or check collection name
- Check: Use Milvus CLI or Python client to list collections
Performance Issues
- Slow queries: Optimize index parameters or reduce
top_k - Memory issues: Adjust
chunk_sizeandchunk_overlap
Use Cases
🏢 Enterprise Search - Large-scale corporate knowledge management
🔬 Scientific Research - Massive dataset analysis and discovery
📱 Recommendation Systems - High-throughput content recommendation
🎯 E-commerce - Product search and recommendation engines
📚 Related Documentation
- SuperOptiX RAG Guide
- RAG Integration Guide - Vector database setup and configuration
- Model Management
Ready to scale your vector search with Milvus? 🚀
Start with this demo to understand how Milvus's enterprise-grade capabilities can power your AI applications with massive-scale knowledge retrieval and similarity search.