π§ͺ MLFlow Integration
Learn how to integrate SuperOptiX with MLFlow for comprehensive experiment tracking, model monitoring, and observability.
π― Overview
MLFlow is a popular open-source platform (third-party) for managing the complete machine learning lifecycle. This integration allows you to:
- Track experiments with detailed metrics and parameters
- Monitor model performance across different runs
- Compare agent versions and configurations
- Export trace data to MLFlow for analysis
- Visualize agent behavior in MLFlow UI
π Quick Setup
Prerequisites
# Install MLFlow
pip install mlflow
# Install SuperOptiX with MLFlow support
pip install superoptix[mlflow]
Basic Configuration
Create a configuration file mlflow_config.yaml
:
# mlflow_config.yaml
mlflow:
tracking_uri: "http://localhost:5000" # MLFlow server URL
experiment_name: "superoptix_agents"
log_artifacts: true
log_metrics: true
log_params: true
# SuperOptiX observability configuration
observability:
enabled: true
backends:
- mlflow
trace_export:
format: "mlflow"
batch_size: 100
π§ Integration Setup
Step 1: Start MLFlow Server
# Start MLFlow tracking server
mlflow server --host 0.0.0.0 --port 5000
# Or use MLFlow UI
mlflow ui --host 0.0.0.0 --port 5000
Step 2: Configure SuperOptiX
Update your agent playbook to include MLFlow integration:
# developer_playbook.yaml
name: "Developer Assistant"
description: "AI developer with MLFlow integration"
tier: "genies"
# ... existing configuration ...
observability:
enabled: true
backends:
- mlflow
mlflow:
experiment_name: "developer_agent"
tracking_uri: "http://localhost:5000"
log_artifacts: true
log_metrics: true
log_params: true
tags:
agent_type: "developer"
tier: "genies"
version: "1.0.0"
Step 3: Run Agent with MLFlow Tracking
# Initialize project
super init mlflow_demo
cd mlflow_demo
# Pull and compile agent
super agent pull developer --tier genies
super agent compile developer
# Run with MLFlow tracking
super agent run developer --goal "Write a Python function to calculate fibonacci numbers"
π MLFlow Integration Features
Automatic Experiment Tracking
SuperOptiX automatically logs the following to MLFlow:
Parameters: - Agent configuration - Model settings - Tool configurations - Execution parameters
Metrics: - Execution time - Token usage - Tool usage frequency - Success/failure rates - Memory usage
Artifacts: - Trace files (JSONL format) - Generated code - Tool outputs - Error logs
Example MLFlow Run
# MLFlow run structure
{
"run_id": "abc123",
"experiment_name": "developer_agent",
"parameters": {
"agent_name": "developer",
"tier": "genies",
"model": "llama3.1:8b",
"temperature": 0.7,
"max_tokens": 2048
},
"metrics": {
"execution_time_ms": 10270.0,
"total_tokens": 1250,
"tools_used": 3,
"success_rate": 1.0
},
"artifacts": {
"traces.jsonl": "path/to/traces.jsonl",
"generated_code.py": "path/to/output.py",
"tool_outputs.json": "path/to/tools.json"
}
}
π Advanced Configuration
Custom Metrics Logging
Extend the MLFlow integration with custom metrics:
# Custom metrics configuration
observability:
mlflow:
custom_metrics:
- name: "code_quality_score"
type: "float"
description: "Code quality assessment score"
- name: "tool_efficiency"
type: "float"
description: "Tool usage efficiency ratio"
- name: "response_relevance"
type: "float"
description: "Response relevance score"
Batch Processing
Configure batch processing for high-volume scenarios:
observability:
mlflow:
batch_processing:
enabled: true
batch_size: 100
flush_interval: 30 # seconds
max_queue_size: 1000
Custom Tags and Metadata
Add custom tags and metadata to MLFlow runs:
observability:
mlflow:
tags:
environment: "production"
team: "ai_engineering"
project: "code_assistant"
metadata:
version: "1.2.0"
deployment: "kubernetes"
region: "us-west-2"
π Monitoring and Analysis
MLFlow UI Dashboard
Access the MLFlow UI to view experiments:
Available Views: - Experiments: Compare different agent runs - Runs: Detailed run information - Metrics: Performance trends over time - Artifacts: Generated outputs and traces - Parameters: Configuration comparisons
Custom Dashboards
Create custom dashboards using MLFlow's API:
import mlflow
import pandas as pd
# Query experiments
experiments = mlflow.search_experiments()
runs = mlflow.search_runs(experiment_names=["developer_agent"])
# Analyze performance trends
performance_df = runs[["execution_time_ms", "total_tokens", "success_rate"]]
print(performance_df.describe())
Alerting and Notifications
Set up alerts for performance degradation:
# Example alerting script
def check_performance_alerts():
runs = mlflow.search_runs(experiment_names=["developer_agent"])
latest_run = runs.iloc[0]
if latest_run["execution_time_ms"] > 15000: # 15 seconds
send_alert("Agent execution time exceeded threshold")
if latest_run["success_rate"] < 0.9:
send_alert("Agent success rate below threshold")
π§ Troubleshooting
Common Issues
1. MLFlow Server Connection
# Check MLFlow server status
curl http://localhost:5000/health
# Restart MLFlow server
mlflow server --host 0.0.0.0 --port 5000
2. Authentication Issues
# Set MLFlow tracking URI
export MLFLOW_TRACKING_URI=http://localhost:5000
# Or configure in code
mlflow.set_tracking_uri("http://localhost:5000")
3. Artifact Storage
# Configure artifact storage
mlflow server --host 0.0.0.0 --port 5000 --backend-store-uri sqlite:///mlflow.db --default-artifact-root ./mlflow_artifacts
Debug Mode
Enable debug logging for MLFlow integration:
π Production Deployment
MLFlow Server Setup
For production deployments, use a robust MLFlow setup:
# Using PostgreSQL backend
mlflow server \
--backend-store-uri postgresql://user:pass@host:port/db \
--default-artifact-root s3://bucket/mlflow \
--host 0.0.0.0 \
--port 5000
Kubernetes Deployment
Deploy MLFlow with Kubernetes:
# mlflow-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: mlflow-server
spec:
replicas: 1
selector:
matchLabels:
app: mlflow
template:
metadata:
labels:
app: mlflow
spec:
containers:
- name: mlflow
image: python:3.9
command: ["mlflow", "server"]
args: ["--host", "0.0.0.0", "--port", "5000"]
ports:
- containerPort: 5000
π Related Resources
- Observability Guide - Complete observability overview
- Agent Development - Build custom agents
- MLFlow Documentation - Official MLFlow docs
- SuperOptiX CLI Reference - CLI commands reference
π― Next Steps
- Set up MLFlow server for your environment
- Configure agent playbooks with MLFlow integration
- Monitor agent performance through MLFlow UI
- Set up alerts for performance degradation
- Scale to production with robust MLFlow deployment
Ready to track your SuperOptiX agents with MLFlow? Start with the basic setup and scale up as needed! π