Qdrant RAG Demo 🎯
A comprehensive demonstration of SuperOptiX's RAG capabilities using Qdrant vector database for high-performance similarity search and intelligent knowledge retrieval.
Overview
This demo showcases how to integrate Qdrant - a blazingly fast vector database - with SuperOptiX's RAG system to create intelligent agents capable of retrieving and synthesizing information from large knowledge bases with exceptional performance.
This demo demonstrates:
⚡ Qdrant Vector Database Integration - Lightning-fast connection to Qdrant for high-performance vector storage
🎯 Precision Similarity Search - Intelligent retrieval using Qdrant's optimized similarity algorithms
📊 Collection Management - Efficient document storage, indexing, and retrieval workflows
🚀 Ultra-fast Query Processing - Exceptional response times with Qdrant's performance optimizations
🔄 RAG Pipeline Integration - Complete retrieval-augmented generation workflow
Prerequisites
1. Install SuperOptiX
pip install superoptix
2. Install Qdrant Dependencies
pip install qdrant-client
3. Set Up Qdrant Server
# Using Docker (recommended)
docker run -d \
--name qdrant \
-p 6333:6333 \
-p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage \
qdrant/qdrant:latest
4. Install and Serve Model
# Install a model (if not already installed)
super model install llama3.1:8b
# Start Ollama server (if using Ollama backend)
ollama serve
Quick Start
1. Pull the Demo Agent
super agent pull rag_qdrant_demo
2. Compile the Agent
super agent compile rag_qdrant_demo
3. Run the Demo
super agent run rag_qdrant_demo --goal "What are the key features of Qdrant and how does it work with SuperOptiX?"
Key Configuration Points:
🔧 Vector Database Setup - Configured to connect to Qdrant at http://localhost:6333
📊 Collection Management - Uses superoptix_knowledge collection for document storage
🎯 Embedding Model - Leverages sentence-transformers/all-MiniLM-L6-v2 for vector generation
⚙️ Search Parameters - Optimized with top_k: 5 and similarity_threshold: 0.7
Playbook Configuration
The demo uses a specialized playbook with Qdrant-specific configurations:
rag:
enabled: true
retriever_type: qdrant
config:
top_k: 5
chunk_size: 512
chunk_overlap: 50
similarity_threshold: 0.7
vector_store:
embedding_model: sentence-transformers/all-MiniLM-L6-v2
url: http://localhost:6333
collection_name: superoptix_knowledge
Customization
Modify Qdrant Connection
vector_store:
url: http://your-qdrant-server:6333
collection_name: YourCustomCollection
api_key: your-api-key # If using authentication
Adjust Search Parameters
config:
top_k: 10 # Retrieve more documents
similarity_threshold: 0.8 # Higher similarity threshold
chunk_size: 1024 # Larger chunks
Configure Collection Settings
vector_store:
collection_config:
vectors:
size: 384 # Vector dimension
distance: Cosine # Distance metric
optimizers_config:
memmap_threshold: 20000
Troubleshooting
Connection Issues
- Error: "Connection refused"
- Solution: Ensure Qdrant server is running on port 6333
- Check:
curl http://localhost:6333/collections
Collection Issues
- Error: "Collection not found"
- Solution: Create collection manually or check collection name
- Check:
curl http://localhost:6333/collections/superoptix_knowledge
Performance Issues
- Slow queries: Optimize collection settings or reduce
top_k - Memory issues: Adjust
chunk_sizeandchunk_overlap
Use Cases
🏭 Industrial Applications - High-throughput document processing and retrieval
🎮 Gaming & Entertainment - Real-time content recommendation systems
🏥 Healthcare - Medical document analysis and patient information retrieval
💰 Financial Services - Risk assessment and regulatory compliance document search
📚 Related Documentation
- SuperOptiX RAG Guide
- RAG Integration Guide - Vector database setup and configuration
- Model Management
Ready to experience lightning-fast vector search with Qdrant? ⚡
Start with this demo to understand how Qdrant's performance optimizations can supercharge your AI applications with blazingly fast knowledge retrieval and similarity search capabilities.