🔍 RAG ChromaDB Demo Agent
The RAG ChromaDB Demo Agent showcases Retrieval-Augmented Generation capabilities with ChromaDB vector database in SuperOptiX. This demo focuses specifically on how to configure and use RAG with ChromaDB for knowledge retrieval and context-aware responses.
🎯 What This Demo Shows
This demo demonstrates:
- 🔍 RAG Integration: How to configure RAG with ChromaDB in SuperOptiX
- 📚 Knowledge Retrieval: Semantic search and document retrieval
- 🧠 Context-Aware Responses: Responses based on retrieved knowledge
- ⚙️ Playbook Configuration: How to set up RAG in agent playbooks
🚀 Setup RAG with ChromaDB
1. Install Ollama Model
# Install the Ollama model used in this demo
super model install llama3.2:8b
2. Start Ollama Server
# Start Ollama server (runs on port 11434 by default)
ollama serve
3. Pull and Run the Demo
# Pull the RAG ChromaDB demo agent
super agent pull rag_chroma_demo
# Compile the agent
super agent compile rag_chroma_demo
# Run the agent
super agent run rag_chroma_demo --goal "What is the SuperOptiX framework?"
🔧 RAG Configuration in Playbook
The RAG ChromaDB demo showcases how to configure RAG in the agent playbook:
Language Model Configuration
language_model:
location: local
provider: ollama
model: llama3.2:8b
api_base: http://localhost:11434
temperature: 0.7
max_tokens: 2048
RAG Configuration
rag:
enabled: true
retriever_type: chroma
config:
top_k: 5
chunk_size: 512
chunk_overlap: 50
similarity_threshold: 0.7
vector_store:
embedding_model: sentence-transformers/all-MiniLM-L6-v2
collection_name: rag_demo_knowledge
persist_directory: ./data/chromadb
Key RAG Configuration Points:
- ✅
enabled: true: Enables RAG functionality - 🗄️
retriever_type: chroma: Uses ChromaDB as vector database - 🔝
top_k: 5: Retrieves top 5 most similar documents - 📄
chunk_size: 512: Document chunk size for processing - 🔗
chunk_overlap: 50: Overlap between chunks for context - 🎯
similarity_threshold: 0.7: Minimum similarity score for retrieval - 🧠
embedding_model: Sentence transformers for embeddings - 📁
collection_name: ChromaDB collection name - 💾
persist_directory: Local storage directory
🔍 RAG: Your AI's Memory Bank
Retrieval-Augmented Generation (RAG) gives your AI agent the ability to access and use specific knowledge. Think of it as giving your AI a personal library:
- 🧠 Semantic Understanding: Finds relevant information based on meaning, not just keywords
- 📚 Knowledge Base: Access to your own documents, databases, and information sources
- 🎯 Precise Answers: Generates responses based on actual retrieved content
- 📖 Source Citations: Always provides references to where information came from
- 🔄 Real-time Updates: Can access the latest information as it becomes available
🔧 Customizing RAG Configuration
Adjust Retrieval Settings
Edit agents/rag_chroma_demo/playbook/rag_chroma_demo_playbook.yaml:
rag:
config:
top_k: 10 # Retrieve more documents
chunk_size: 1024 # Larger chunks
similarity_threshold: 0.8 # Higher similarity threshold
Change Vector Database
rag:
retriever_type: lancedb # Use LanceDB instead
vector_store:
table_name: lancedb_demo_table
database_path: ./data/lancedb
Use Different Embedding Model
rag:
vector_store:
embedding_model: sentence-transformers/all-mpnet-base-v2 # Different embeddings
🚨 Troubleshooting RAG
Common Issues
-
Ollama Server Not Running
# Check if Ollama server is running curl http://localhost:11434/api/tags # Start Ollama server ollama serve -
ChromaDB Issues
# Check RAG configuration super agent inspect rag_chroma_demo # Clear ChromaDB data if needed rm -rf ./data/chromadb -
RAG Not Working
# Check RAG configuration super agent inspect rag_chroma_demo # Verify knowledge base is populated
Getting Help
# Check agent status
super agent inspect rag_chroma_demo
# View agent logs
super agent logs rag_chroma_demo
# Get RAG help
super agent --help
📚 Related Resources
- RAG Guide - Complete RAG setup and usage
- RAG Integration Guide - ChromaDB configuration and setup
- Agent Development - Building custom agents
🎉 Next Steps
After exploring the RAG ChromaDB demo:
- Try Other RAG Backends: Explore RAG LanceDB for production use
- Customize: Modify the playbook for your specific knowledge base
- Build Your Own: Use this as a template for your custom RAG agent
Ready to explore knowledge retrieval? Start with the RAG ChromaDB demo! 🚀 Ready to explore knowledge retrieval? Start with the RAG ChromaDB demo! 🚀