Skip to content

๐Ÿš€ Agent Development Life Cycle in SuperOptiX

SuperOptiX follows a evaluation-first, BDD-driven development approach that ensures your agents are production-ready from day one. This guide walks you through the complete lifecycle of building, testing, and deploying AI agents.


๐ŸŽฏ The SuperOptiX Development Lifecycle

graph TD
    A[๐Ÿ“‹ Spec: Intent & Context<br/>SuperSpec DSL] --> B[๐Ÿ”จ Compile: Convert to Python<br/>DSPy Pipelines]
    B --> C[๐Ÿงช Evaluate: BDD/TDD Testing<br/>Establish Baseline]
    C --> D{๐Ÿ“Š Pass Quality Gate?}
    D -->|โœ… Yes| E[๐Ÿš€ Run: Execute Agent]
    D -->|โŒ No| F[โšก Optimize: DSPy Optimizers<br/>Learn from Scenarios]
    F --> B
    E --> G[๐ŸŽผ Orchestra: Multi-Agent<br/>Coordination]
    G --> H[๐Ÿ“ˆ Monitor: Observability<br/>Performance Tracking]
    H --> C

    style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
    style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
    style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
    style D fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
    style E fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
    style F fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
    style G fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
    style H fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff

๐Ÿ—๏ธ Phase 1: Specification & Context Engineering

SuperSpec DSL: Define Intent & Context

The foundation of every agent starts with the SuperSpec DSL - a declarative language for defining agent behavior, context, and capabilities.

Bash
# Generate agent with context engineering
super spec generate genies developer --rag --memory --tools

What happens:

  • ๐ŸŽญ Persona Definition - Agent personality and behavioral traits

  • ๐Ÿง  Memory Systems - Short-term, long-term, and episodic memory

  • ๐Ÿ› ๏ธ Tool Integration - Web search, file operations, code analysis

  • ๐Ÿ“š RAG Capabilities - Knowledge retrieval (document ingestion is configured separately)

  • ๐Ÿ“‹ Task Specifications - What your agent should do

  • ๐Ÿ”’ Safety Constraints - What your agent should NOT do

Example Playbook Structure:

YAML
apiVersion: agent/v1
kind: AgentSpec
metadata:
  name: "Developer Assistant"
  tier: "genies"
  namespace: "software"

spec:
  persona: |
    You are an expert software developer with 10+ years of experience.
    You specialize in Python, React, and cloud architecture.
    Always provide practical, production-ready solutions.

  context:
    memory:
      short_term: true
      long_term: true
      episodic: true

    tools:
      - web_search
      - code_formatter
      - git_analyzer
      - docker_helper

    rag:
      enabled: true
      # RAG sources are configured in the vector database, not directly in the playbook.
      # This flag enables the agent to use the pre-configured RAG system.
      sources: []

  tasks:
    - name: "code_review"
      description: "Review code for best practices"
    - name: "architecture_design"
      description: "Design system architecture"


๐Ÿ› ๏ธ Phase 2: Tool & Memory Integration

The real power of Genies-tier agents comes from their ability to use tools and memory.

Available Tools

Your agent has access to a variety of built-in tools.

  • WebSearchTool: Performs web searches to gather information.

    โš ๏ธ Note: The default WebSearchTool is a non-functional placeholder. To use it, you must integrate a real search API (e.g., DuckDuckGo, Serper, Tavily) by modifying the tool's implementation in superoptix/tools/categories/core.py.

  • CalculatorTool: For performing mathematical calculations.

  • FileReaderTool: To read the contents of local files.

  • CodeFormatterTool: To format and pretty-print code snippets.

Memory Systems

  • Short-Term Memory: Remembers the immediate context of a conversation.
  • Long-Term Memory: Stores and recalls information over extended periods.
  • Episodic Memory: Remembers past interactions to learn from experience.

๐Ÿ”จ Phase 3: Compilation - YAML to Python

Transform Playbooks into Executable Pipelines

Bash
super agent compile developer

What happens:

  • ๐Ÿ“‹ YAML Playbook โ†’ Python Pipeline

  • ๐ŸŽฏ DSPy Integration - Automatic pipeline generation

  • ๐Ÿ”ง Framework Selection - Tier-appropriate optimizations

  • ๐Ÿ“ File Generation - developer_pipeline.py created

๐Ÿ”จ Compilation Output
Text Only
================================================================================
๐Ÿ”จ Compiling agent 'developer'...
โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โšก Compilation Details โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚                                                                                                          โ”‚
โ”‚  ๐Ÿค– COMPILATION IN PROGRESS                                                                              โ”‚
โ”‚                                                                                                          โ”‚
โ”‚  ๐ŸŽฏ Agent: Developer Assistant                                                                           โ”‚
โ”‚  ๐Ÿ—๏ธ Framework: DSPy Genies Pipeline โ€” other frameworks coming soon                                      โ”‚
โ”‚  ๐Ÿ”ง Process: YAML playbook โ†’ Executable Python pipeline                                                  โ”‚
โ”‚  ๐Ÿ“ Output: swe/agents/developer/pipelines/developer_pipeline.py                                        โ”‚
โ”‚                                                                                                          โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โœ… Compilation successful! Agent 'developer' is ready for evaluation.

๐Ÿงช Phase 3: Evaluation-First Development

BDD/TDD: Test Before You Optimize

๐Ÿšจ CRITICAL: Always evaluate before optimizing!

Bash
super agent evaluate developer

Why Evaluation-First?

  • ๐Ÿ“Š Baseline Measurement - Know your starting point

  • ๐ŸŽฏ Quality Gates - Ensure scenarios are well-written

  • ๐Ÿ’ก Optimization Strategy - Plan improvements based on failures

  • โœ… Fail-Fast Feedback - Catch issues early

๐Ÿงช Evaluation Output
Text Only
๐ŸŽญ Running BDD Test Suite for Agent: developer
============================================================

๐ŸŽญ Executing BDD Scenarios...
  ๐Ÿ“ Running: basic_api_endpoint_creation
    โœ… PASSED
  ๐Ÿ“ Running: data_structure_design
    โœ… PASSED
  ๐Ÿ“ Running: algorithm_implementation
    โŒ FAILED: semantic meaning differs significantly
  ๐Ÿ“ Running: robust_error_handling
    โœ… PASSED
  ๐Ÿ“ Running: test_code_generation
    โœ… PASSED

๐Ÿ“Š BDD Test Results Summary:
========================================
Total Scenarios: 5
Passed: 4 โœ…
Failed: 1 โŒ
Pass Rate: 80.0%
BDD Score: 0.800

๐Ÿ’ก Recommendations:
   ๐Ÿ”ง Fix 1 failing scenarios to improve reliability
   ๐ŸŽฏ Common issue (1 scenarios): semantic meaning differs significantly

๐ŸŽ‰ BDD Test Suite: EXCELLENT (80.0%)

Quality Gates

Pass Rate Status Action Required
โ‰ฅ 80% โœ… Production Ready Deploy with confidence
60-79% โš ๏ธ Needs Improvement Optimize and re-evaluate
< 60% โŒ Significant Work Fix scenarios and recompile

โšก Phase 4: Optimization - DSPy Magic

Learn from Your BDD Scenarios

Bash
super agent optimize developer

What Optimization Does:

  • ๐Ÿ“š Training Data - Uses your BDD scenarios as examples

  • ๐Ÿง  DSPy BootstrapFewShot - Automatic prompt improvement

  • ๐Ÿ“ˆ Performance Enhancement - Better reasoning and responses

  • ๐Ÿ’พ Optimized Weights - Saved to developer_optimized.json

โšก Optimization Output
Text Only
================================================================================
๐Ÿš€ Optimizing agent 'developer'...

โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โšก Optimization Details โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚                                                                                                          โ”‚
โ”‚  ๐Ÿค– OPTIMIZATION IN PROGRESS                                                                            โ”‚
โ”‚                                                                                                          โ”‚
โ”‚  ๐ŸŽฏ Agent: Developer Assistant                                                                           โ”‚
โ”‚  ๐Ÿ”ง Strategy: DSPy BootstrapFewShot                                                                      โ”‚
โ”‚  ๐Ÿ“Š Data Source: BDD scenarios from playbook                                                            โ”‚
โ”‚  ๐Ÿ’พ Output: swe/agents/developer/pipelines/developer_optimized.json                                     โ”‚
โ”‚                                                                                                          โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

๐ŸŽฏ Using 5 BDD scenarios for optimization...
๐Ÿ“ˆ Learning from scenario: basic_api_endpoint_creation
๐Ÿ“ˆ Learning from scenario: data_structure_design
๐Ÿ“ˆ Learning from scenario: algorithm_implementation
๐Ÿ“ˆ Learning from scenario: robust_error_handling
๐Ÿ“ˆ Learning from scenario: test_code_generation

โœ… Optimization complete! Agent performance enhanced.

Re-Evaluate to Measure Improvement

Bash
super agent evaluate developer

Expected Results:

  • ๐Ÿ“ˆ Improved Pass Rate - Should be higher than baseline

  • ๐ŸŽฏ Better Quality - More accurate and relevant responses

  • โšก Faster Execution - Optimized weights load automatically


๐Ÿš€ Phase 5: Execution - Run Your Agent

Deploy Your Optimized Agent

Bash
super agent run developer --goal "Create a REST API with FastAPI"

What Happens:

  • ๐Ÿ”„ Load Optimized Pipeline - Uses developer_optimized.json

  • ๐Ÿง  Context-Aware Processing - Memory, tools, and RAG integration

  • ๐Ÿ“Š Real-time Execution - Interactive agent responses

  • ๐ŸŽฏ Goal-Oriented Behavior - Focused on your specific task

๐Ÿš€ Execution Output
Text Only
๐Ÿš€ Running agent 'developer'...

Loading pipeline... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 100%
๐Ÿš€ Using pre-optimized pipeline from developer_optimized.json

๐ŸŽฏ Goal: Create a REST API with FastAPI

๐Ÿค– Developer Assistant: I'll help you create a comprehensive REST API using FastAPI. Let me break this down into a well-structured solution.

๐Ÿ“‹ Implementation Plan:
1. Project structure setup
2. FastAPI application with proper configuration
3. Database models and schemas
4. CRUD operations
5. Authentication and validation
6. Error handling and logging

๐Ÿ”ง Let me start with the core implementation...

[Detailed implementation follows...]

๐ŸŽผ Phase 6: Orchestration - Multi-Agent Coordination

Coordinate Multiple Agents

Bash
# Add more agents to your team
super agent pull devops_engineer
super agent pull qa_engineer

# Compile and optimize all agents
super agent compile --all
super agent optimize devops_engineer
super agent optimize qa_engineer

# Create coordinated workflow
super orchestra create sdlc
super orchestra run sdlc --goal "Build a complete web application"

What Happens:

  • ๐Ÿค Agent Coordination - Seamless communication between agents

  • ๐Ÿ“Š Workflow Management - Sequential or parallel execution

  • ๐Ÿ”„ Data Flow - Output from one agent feeds into another

  • ๐Ÿ“‹ Production Artifacts - Complete implementation, tests, and deployment


๐Ÿ“ˆ Phase 7: Monitoring & Continuous Improvement

Observability & Performance Tracking

Bash
# Enable observability
super observe enable developer

# Monitor performance
super observe dashboard

# Debug specific issues
super observe debug agent developer

# View detailed traces
super observe traces developer

Monitoring Capabilities:

  • ๐Ÿ“Š Real-time Metrics - Performance, latency, success rates

  • ๐Ÿ” Detailed Traces - Step-by-step execution analysis

  • ๐Ÿ› Debugging Tools - Identify and fix issues

  • ๐Ÿ“ˆ Trend Analysis - Long-term performance tracking


๐Ÿ”„ The Complete Workflow

Proper BDD/TDD Development Cycle

Bash
# 1. Define your agent (Spec)
super spec generate genies developer --rag --memory --tools

# 2. Compile to executable code
super agent compile developer

# 3. Establish baseline performance (CRITICAL)
super agent evaluate developer

# 4. Optimize based on evaluation results
super agent optimize developer

# 5. Measure improvement
super agent evaluate developer

# 6. Deploy when quality gates pass
super agent run developer --goal "Your production task"

# 7. Monitor and iterate
super observe dashboard

Advanced Development Tips

๐Ÿ”ง Customize DSPy Pipelines

Python
# Modify generated pipeline for custom logic
# File: agents/developer/pipelines/developer_pipeline.py

class CustomDeveloperPipeline(DeveloperPipeline):
    def __init__(self):
        super().__init__()
        # Add custom tools
        self.tools.append(CustomCodeAnalyzer())

    def forward(self, query):
        # Add custom preprocessing
        enhanced_query = self.preprocess_query(query)
        return super().forward(enhanced_query)

๐ŸŽฏ Smart Optimization Strategies

Bash
# Force re-optimization
super agent optimize developer --force

# Runtime optimization for experiments
super agent run developer --goal "task" --optimize

๐Ÿ“Š Quality-Driven Development

  • Write Specific Scenarios - Include concrete examples and expected outputs

  • Cover Edge Cases - Test error conditions and boundary cases

  • Use Realistic Data - Make scenarios representative of real usage

  • Iterate Based on Results - Use evaluation feedback to improve scenarios


๐ŸŽฏ Best Practices

โœ… DO's

  • Always evaluate before optimizing - Establish baseline performance

  • Write comprehensive BDD scenarios - Cover all important use cases

  • Use quality gates - Don't deploy until pass rate โ‰ฅ 80%

  • Monitor in production - Track performance and iterate

  • Version your playbooks - Track changes and improvements

โŒ DON'Ts

  • Don't optimize without baseline - You won't know if you improved

  • Don't skip evaluation after optimization - Validate your improvements

  • Don't deploy without quality gates - Ensure production readiness

  • Don't ignore failing scenarios - They indicate real problems


๐Ÿš€ Production Deployment Checklist

Pre-Deployment

  • โœ… Quality Gates Pass - โ‰ฅ 80% BDD pass rate

  • โœ… Optimization Complete - Optimized weights generated

  • โœ… Monitoring Enabled - Observability configured

  • โœ… Error Handling - Robust error management

  • โœ… Performance Validated - Latency and throughput acceptable

Post-Deployment

  • ๐Ÿ“Š Monitor Performance - Track key metrics

  • ๐Ÿ” Analyze Traces - Identify optimization opportunities

  • ๐Ÿ“ˆ Measure Impact - Compare to baseline

  • ๐Ÿ”„ Iterate - Continuous improvement cycle


๐ŸŽ‰ Success Metrics

Development Velocity

  • Time to First Agent - < 30 minutes

  • Time to Production - < 2 hours

  • Scenario Coverage - 100% of critical paths

  • Optimization Cycles - < 3 iterations to 80% pass rate

Production Quality

  • BDD Pass Rate - โ‰ฅ 80%

  • Response Quality - High relevance and accuracy

  • System Reliability - 99.9% uptime

  • Performance - < 5 second response time


๐ŸŽฏ Remember: SuperOptiX is built for production-ready AI agents from day one. Follow the evaluation-first workflow, and you'll build reliable, scalable agentic systems that deliver real business value! ๐Ÿš€