๐ญ Behavior-Driven Development (BDD) in SuperOptiX
๐ฏ What is BDD?
Behavior-Driven Development (BDD) is a software development methodology that bridges the gap between technical and non-technical stakeholders by describing software behavior in natural language. BDD focuses on behavior rather than implementation details.
Core BDD Principles
graph LR
A[Business Requirements] --> B[BDD Scenarios]
B --> C[Executable Specifications]
C --> D[Test-Driven Development]
D --> E[Quality Assurance]
E --> F[Continuous Delivery]
style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style D fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
style E fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style F fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
Original BDD Structure (Gherkin)
Feature: User Authentication
As a user
I want to log into the system
So that I can access my account
Scenario: Successful login with valid credentials
Given I am on the login page
When I enter valid username and password
And I click the login button
Then I should be redirected to the dashboard
And I should see my profile information
๐๏ธ BDD in Software Development
Why BDD Works
BDD transforms software development by:
- โ Shared Understanding: Business and technical teams speak the same language
- ๐ฏ Focus on Behavior: Describes what the system should do, not how
- ๐ Living Documentation: Scenarios serve as executable specifications
- ๐งช Test-Driven: Every behavior is testable and validated
- ๐ Quality Gates: Clear pass/fail criteria for deployment
BDD Workflow in Original Development
graph TB
A[Business Requirements] --> B[Write BDD Scenarios]
B --> C[Implement Features]
C --> D[Run BDD Tests]
D --> E{All Tests Pass?}
E -->|Yes| F[Deploy to Production]
E -->|No| G[Fix Implementation]
G --> C
style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style D fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
style E fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style F fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style G fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
๐ค BDD for AI Agent Development
The Perfect Match: BDD + AI Agents
BDD is perfectly suited for AI agent development because:
๐ฏ 1. Behavior-First Approach
- AI agents are defined by their behavioral capabilities
- BDD scenarios describe expected agent responses
- Focus on what the agent should do, not internal implementation
๐ 2. Iterative Improvement
- BDD scenarios become training data for optimization
- Test โ Optimize โ Test cycle drives continuous improvement
- Quality gates ensure reliable agent behavior
๐งช 3. Testable Specifications
- Every agent capability can be specified and tested
- Pass/fail criteria for each behavioral expectation
- Regression testing prevents quality degradation
BDD in SuperOptiX: SuperSpec Feature Specifications
SuperOptiX implements BDD through SuperSpec, our domain-specific language for agent specifications. BDD scenarios are defined as feature_specifications within the SuperSpec playbook structure:
# SuperSpec Feature Specifications (BDD Scenarios)
feature_specifications:
scenarios:
- name: "robust_api_endpoint_creation"
description: "Given a REST API requirement, the agent should generate secure, validated, well-documented endpoints"
input:
feature_requirement: "Create a user authentication endpoint with email validation, password hashing, rate limiting, and comprehensive error handling"
expected_output:
implementation: |
from fastapi import APIRouter, HTTPException, Depends
from pydantic import BaseModel, EmailStr
from passlib.context import CryptContext
from slowapi import Limiter, _rate_limit_exceeded_handler
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
limiter = Limiter(key_func=lambda: "global")
class AuthRequest(BaseModel):
email: EmailStr
password: str
@router.post("/auth/login")
@limiter.limit("5/minute")
async def authenticate_user(request: AuthRequest):
# Validate email format (handled by EmailStr)
if not request.password or len(request.password) < 8:
raise HTTPException(status_code=400, detail="Invalid password format")
# Hash password for comparison
hashed_password = pwd_context.hash(request.password)
# Database lookup would go here
return {"status": "success", "token": "jwt_token_here"}
๐ BDD + DSPy: The Evaluation-First Revolution
Why BDD is Perfect for DSPy's Evaluation-First Approach
DSPy's evaluation-first methodology aligns perfectly with BDD principles:
๐ฏ 1. Specification-Driven Development
graph LR
A[BDD Scenarios] --> B[DSPy Gold Examples]
B --> C[Optimization Training]
C --> D[Improved Prompts]
D --> E[Better Agent Behavior]
E --> F[Re-evaluation]
F --> G{Quality Gates Pass?}
G -->|Yes| H[Production Ready]
G -->|No| I[Further Optimization]
I --> C
style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style D fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
style E fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style F fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style G fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style H fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style I fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
๐ 2. Dual-Purpose Scenarios
Your BDD scenarios serve two critical functions:
- ๐ Training Data: Converted to DSPy gold examples for optimization
- ๐งช Test Cases: Used for evaluation and quality assurance
โก 3. Continuous Feedback Loop
# The SuperOptiX BDD/DSPy Workflow
super agent compile developer # Compile with BDD scenarios
super agent evaluate developer # Establish baseline (BDD tests)
super agent optimize developer # DSPy optimization using BDD scenarios
super agent evaluate developer # Re-evaluate (measure improvement)
super agent run developer # Production execution
๐ญ Professional BDD Spec Runner
SuperOptiX features a revolutionary BDD specification framework with professional-grade tooling that rivals pytest, cucumber, and other industry-standard testing tools.
๐ Quick Start
# Standard specification execution
super agent evaluate developer
# Detailed analysis with verbose output
super agent evaluate developer --verbose
# Auto-tuning for improved results
super agent evaluate developer --auto-tune
Professional Output Formats
# Table format (default) - beautiful console output
super agent evaluate developer --format table
# JSON format - for CI/CD integration
super agent evaluate developer --format json
# Save detailed report to file
super agent evaluate developer --save-report test_results.json
๐ Multi-Criteria Evaluation System
Evaluation Metrics
Each BDD specification is evaluated using four weighted criteria:
Criterion | Weight | Description |
---|---|---|
Semantic Similarity | 50% | How closely the output matches expected meaning |
Keyword Presence | 20% | Important terms and concepts inclusion |
Structure Match | 20% | Format, length, and organization similarity |
Output Length | 10% | Basic sanity check for response completeness |
Quality Gates
- ๐ โฅ 80%: EXCELLENT - Production ready
- โ ๏ธ 60-79%: GOOD - Minor improvements needed
- โ < 60%: NEEDS WORK - Significant improvements required
Scoring System
Confidence Score = (
semantic_similarity ร 0.5 +
keyword_presence ร 0.2 +
structure_match ร 0.2 +
output_length ร 0.1
)
๐ฏ Professional Spec Runner Features
1. Session Information Panel
The spec runner starts with a professional session overview:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ๐ Spec Execution Session โโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ฏ Agent: developer โ
โ ๐
Session: 2025-01-07 14:30:15 โ
โ ๐ง Mode: Standard validation โ
โ ๐ Verbosity: Summary โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
2. Real-Time Progress Tracking
Watch your specifications execute in real-time with spinners and status updates:
โ
Pipeline loaded
๐ Discovering BDD Specifications...
๐ Found 5 BDD specifications
๐งช Executing BDD Specification Suite
โก Executing: developer_comprehensive_task...
โก Executing: developer_problem_solving...
3. Beautiful Specification Results Table
Professional tabular output showing all specification results at a glance:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโณโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Specification โ Status โ Score โ Description โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ developer_comprehensive_task โ โ
PASS โ 0.87 โ Complex software requirements handl... โ
โ developer_problem_solving โ โ FAIL โ 0.45 โ Problem-solving approach demonstra... โ
โ developer_best_practices โ โ
PASS โ 0.78 โ Industry standards and guidelines... โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
4. Comprehensive Summary Dashboard
Color-coded quality gates with detailed metrics:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ๐ก Specification Results Summary โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ ๐ Total Specs: 5 ๐ฏ Pass Rate: 60.0% โ
โ โ
Passed: 3 ๐ค Model: llama3.1:8b โ
โ โ Failed: 2 ๐ช Capability: 0.68 โ
โ ๐ Quality Gate: โ ๏ธ GOOD ๐ Status: ๐ Optimized โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
5. Intelligent Failure Analysis
Detailed breakdown of failing specifications with specific fix suggestions:
๐ Failure Analysis
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Failed Specification โ Issue โ Fix Suggestion โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ developer_problem_solving โ semantic meaning differs โ Improve response relevance โ
โ api_error_handling โ missing key terms or concepts โ Include technical terms โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ Verbose Mode - Deep Analysis
Use --verbose
flag for detailed test analysis:
Detailed Test Results
Each failing specification gets a comprehensive analysis panel:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Spec #2: โ FAILED โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ Specification: developer_problem_solving โ
โ Description: When facing software challenges, the agent should demonstrate systematic problem-solving โ
โ Confidence Score: 0.452 โ
โ Semantic Similarity: 0.234 โ
โ Failure Reason: semantic meaning differs significantly โ
โ โ
โ ๐ก Fix Guidance: โ
โ โข Review and improve the response quality โ
โ โข Ensure the output addresses all aspects of the input โ
โ โข Make the response more relevant to the expected output โ
โ โข Use similar terminology and concepts โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐ ๏ธ Advanced Techniques
Auto-Tuning
Automatically adjust evaluation criteria based on model performance:
Ignore Checks (Development Mode)
Skip validation for rapid development:
CI/CD Integration
# GitHub Actions example
- name: Evaluate Agent
run: |
super agent evaluate developer --format json --save-report results.json
- name: Check Quality Gate
run: |
python -c "
import json
results = json.load(open('results.json'))
if results['quality_gate'] != 'EXCELLENT':
exit(1)
"
๐ญ BDD in SuperOptiX: Real-World Example
Step 1: Define BDD Scenarios in SuperSpec Playbook
# agents/developer/playbook/developer_playbook.yaml (SuperSpec DSL)
feature_specifications:
scenarios:
- name: "developer_comprehensive_task"
description: "Given a complex software requirement, the agent should provide detailed analysis and recommendations"
input:
feature_requirement: "Design a microservices architecture for an e-commerce platform with user authentication, product catalog, order management, and payment processing"
expected_output:
implementation: |
**Microservices Architecture Design**
**1. Service Decomposition:**
- User Service: Authentication, profiles, preferences
- Product Service: Catalog, inventory, search
- Order Service: Order lifecycle, status tracking
- Payment Service: Payment processing, refunds
- Notification Service: Email, SMS, push notifications
**2. Technology Stack:**
- API Gateway: Kong or AWS API Gateway
- Service Mesh: Istio for inter-service communication
- Database: PostgreSQL for each service (database per service pattern)
- Message Queue: RabbitMQ or Apache Kafka
- Monitoring: Prometheus + Grafana
**3. Security Considerations:**
- JWT tokens for authentication
- API rate limiting
- Data encryption in transit and at rest
- Service-to-service authentication
Step 2: Compile SuperSpec and Evaluate
# Compile SuperSpec playbook with BDD scenarios
super agent compile developer
# Run BDD evaluation (establishes baseline)
super agent evaluate developer
Output:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ๐ Spec Execution Session โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ฏ Agent: developer โ
โ ๐
Session: 2025-01-07 14:30:15 โ
โ ๐ง Mode: Standard validation โ
โ ๐ Verbosity: Summary โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐งช Executing BDD Specification Suite
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Progress: ๐งช Running 5 BDD specifications...
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ 0/5
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโณโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Specification โ Status โ Score โ Description โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ developer_comprehensive_task โ โ
PASS โ 0.87 โ Complex software requirements handl... โ
โ developer_problem_solving โ โ FAIL โ 0.45 โ Problem-solving approach demonstra... โ
โ developer_best_practices โ โ
PASS โ 0.78 โ Industry standards and guidelines... โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ๐ก Specification Results Summary โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ ๐ Total Specs: 5 ๐ฏ Pass Rate: 60.0% โ
โ โ
Passed: 3 ๐ค Model: llama3.1:8b โ
โ โ Failed: 2 ๐ช Capability: 0.68 โ
โ ๐ Quality Gate: โ ๏ธ GOOD ๐ Status: ๐ Optimized โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Step 3: Optimize Using SuperSpec BDD Scenarios
# DSPy optimization using SuperSpec BDD scenarios as training data
super agent optimize developer
What happens during optimization: 1. SuperSpec BDD scenarios are converted to DSPy gold examples 2. DSPy BootstrapFewShot uses scenarios to improve prompts 3. Optimized pipeline is saved for future use
Step 4: Re-evaluate SuperSpec and Measure Improvement
Expected improvement:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ๐ข Specification Results Summary โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ ๐ Total Specs: 5 ๐ฏ Pass Rate: 80.0% โ
โ โ
Passed: 4 ๐ค Model: llama3.1:8b โ
โ โ Failed: 1 ๐ช Capability: 0.82 โ
โ ๐ Quality Gate: ๐ EXCELLENT ๐ Status: ๐ Optimized โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐ BDD Evaluation Metrics in SuperOptiX
Multi-Criteria Evaluation System
SuperOptiX uses 4 weighted criteria for SuperSpec BDD evaluation:
Criterion | Weight | Description |
---|---|---|
Semantic Similarity | 50% | How closely the output matches expected meaning |
Keyword Presence | 20% | Important terms and concepts inclusion |
Structure Match | 20% | Format, length, and organization similarity |
Output Length | 10% | Basic sanity check for completeness |
Quality Gates
- ๐ โฅ 80%: EXCELLENT - Production ready
- โ ๏ธ 60-79%: GOOD - Minor improvements needed
- โ < 60%: NEEDS WORK - Significant improvements required
Detailed Scoring
{
"scenario_name": "robust_error_handling",
"description": "When implementing functionality that can fail...",
"passed": true,
"confidence_score": 0.82,
"semantic_similarity": 0.85,
"criteria_breakdown": {
"semantic_similarity": 0.85,
"output_length": 1.0,
"keyword_presence": 0.75,
"structure_match": 0.80
},
"failure_reason": null,
"expected": {...},
"actual": {...},
"threshold_used": 0.6
}
๐ฏ BDD Best Practices for AI Agents
โ DO's
1. Write Specific, Testable Scenarios
# Good: Specific and testable
- name: "secure_password_validation"
description: "When validating user passwords, the agent should enforce security requirements"
input:
feature_requirement: "Implement password validation with minimum 8 characters, uppercase, lowercase, number, and special character"
expected_output:
implementation: |
def validate_password(password):
if len(password) < 8:
return False, "Password must be at least 8 characters"
if not re.search(r'[A-Z]', password):
return False, "Password must contain uppercase letter"
# ... additional validation
return True, "Password is valid"
2. Cover Multiple Behavioral Aspects
# Comprehensive scenario coverage
- name: "happy_path_scenario" # Normal operation
- name: "error_handling_scenario" # Error conditions
- name: "edge_case_scenario" # Boundary conditions
- name: "security_scenario" # Security requirements
- name: "performance_scenario" # Performance expectations
3. Use Realistic, Representative Data
# Realistic input data
input:
feature_requirement: "Create a REST API for user registration with email validation, password hashing, and rate limiting"
โ DON'Ts
1. Don't Write Vague Scenarios
# Bad: Too vague
- name: "create_function"
description: "Make a function"
input:
feature_requirement: "Function that does something"
expected_output:
implementation: "def func(): pass"
2. Don't Ignore Error Cases
# Missing error handling scenarios
# Always include scenarios for:
# - Invalid input handling
# - Error response formats
# - Edge case behavior
3. Don't Over-Complicate Scenarios
# Keep scenarios focused on single responsibilities
# One scenario = one specific behavior
# Multiple scenarios = comprehensive coverage
๐ BDD Development Workflow
The Complete SuperSpec BDD/TDD Cycle
graph TB
A[Define SuperSpec BDD Scenarios] --> B[Compile SuperSpec]
B --> C[Run Baseline Evaluation]
C --> D[Analyze Results]
D --> E{Quality Gates Pass?}
E -->|Yes| F[Deploy to Production]
E -->|No| G[Optimize Agent]
G --> H[Re-evaluate]
H --> D
style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style D fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
style E fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style F fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style G fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style H fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
Command Sequence
# 1. Define SuperSpec BDD scenarios in playbook
vim agents/developer/playbook/developer_playbook.yaml
# 2. Compile SuperSpec with BDD scenarios
super agent compile developer
# 3. Establish baseline performance
super agent evaluate developer
# 4. Optimize using SuperSpec scenarios as training data
super agent optimize developer
# 5. Measure improvement
super agent evaluate developer
# 6. Deploy if quality gates pass
super agent run developer --goal "Your production task"
๐ Advanced BDD Features
Verbose Mode for Deep Analysis
Output includes: - Detailed failure analysis for SuperSpec scenarios - Specific fix recommendations - Confidence score breakdown - Expected vs actual output comparison
Custom Validation Criteria
# Enhanced scenarios with validation hints
- name: "security_focused_implementation"
description: "Agent should generate secure code with proper input validation"
input:
feature_requirement: "Create a password reset endpoint with security best practices"
expected_output:
implementation: |
# Expected secure implementation here
validation_criteria: # Optional hints
- "Uses secure random token generation"
- "Includes rate limiting"
- "Validates email format"
- "Handles edge cases gracefully"
Scenario Categories
feature_specifications:
scenarios:
# Basic functionality
- name: "happy_path_scenario"
category: "functionality"
# ...
# Error handling
- name: "error_handling_scenario"
category: "error_handling"
# ...
# Performance
- name: "efficiency_scenario"
category: "performance"
# ...
# Security
- name: "security_scenario"
category: "security"
# ...
๐ฏ BDD vs Traditional Testing
Traditional Unit Testing
def test_password_validation():
assert validate_password("weak") == False
assert validate_password("Strong123!") == True
SuperSpec BDD in SuperOptiX
- name: "password_validation_behavior"
description: "When validating passwords, the agent should enforce security requirements"
input:
feature_requirement: "Implement password validation with security requirements"
expected_output:
implementation: |
def validate_password(password):
# Comprehensive validation logic
# Security-focused implementation
# Clear error messages
Key Differences
Aspect | Traditional Testing | BDD in SuperOptiX |
---|---|---|
Focus | Implementation details | Behavioral expectations |
Language | Technical code | Natural language + examples |
Stakeholders | Developers only | Business + Technical |
Training Data | No | Yes (SuperSpec โ DSPy optimization) |
Quality Gates | Pass/Fail | Multi-criteria scoring |
๐ Conclusion
SuperSpec BDD in SuperOptiX represents a revolutionary approach to AI agent development that combines:
- ๐ฏ Behavior-driven specifications that focus on what agents should do
- ๐ SuperSpec + DSPy integration that uses scenarios for both training and testing
- ๐งช Evaluation-first development that ensures quality before deployment
- ๐ Multi-criteria quality gates that provide comprehensive validation
- ๐ Continuous improvement through iterative optimization cycles
The SuperOptiX BDD Advantage
- ๐ญ Professional Spec Runner: Beautiful UI with detailed analysis
- ๐ค AI-Powered Optimization: BDD scenarios become DSPy training data
- ๐ Quality Assurance: Multi-criteria evaluation with clear metrics
- ๐ Iterative Development: Continuous improvement through feedback loops
- ๐ Production Readiness: Quality gates ensure reliable deployment
Start using SuperSpec BDD in SuperOptiX today and experience the difference of scientifically validated, behavior-driven AI agents!
๐ฏ SuperOptiX Workflow Integration
The Complete Workflow
graph TD
A[Define Agent Playbook] --> B[Compile Agent]
B --> C[Evaluate Agent]
C --> D{Pass Quality Gate?}
D -->|Yes| E[Run Agent]
D -->|No| F[Optimize Agent]
F --> B
E --> G[Add to Orchestra]
G --> H[Run Orchestra]
style A fill:#1e3a8a,stroke:#3b82f6,stroke-width:2px,color:#ffffff
style B fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style C fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style D fill:#dc2626,stroke:#ef4444,stroke-width:2px,color:#ffffff
style E fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
style F fill:#d97706,stroke:#f59e0b,stroke-width:2px,color:#ffffff
style G fill:#7c3aed,stroke:#a855f7,stroke-width:2px,color:#ffffff
style H fill:#059669,stroke:#10b981,stroke-width:2px,color:#ffffff
1. Define Agent Playbook
Write declarative specifications using SuperSpec DSL:
apiVersion: agent/v1
kind: Agent
metadata:
name: customer-service
tier: genie
spec:
context:
memory: true
tools: true
tasks:
- name: "handle_inquiry"
description: "Handle customer inquiries"
2. Compile Agent
Translate playbooks into executable pipelines:
3. Evaluate Agent
Run BDD specifications against the compiled agent:
4. Optimize Agent
If evaluation fails, optimize based on feedback:
5. Run Agent
Once evaluation passes, run the agent:
๐ก Pro Tip: Start with 3-5 well-crafted SuperSpec BDD scenarios for your agents. Quality over quantity leads to better optimization and more reliable evaluation results. Remember: your SuperSpec BDD scenarios serve dual purposes - they're both your test cases AND your training data!