Skip to content

Complete CLI Usage Guide

SuperOptiX CLI: Your Complete Command Reference

Master the super CLI for building, optimizing, and deploying AI agents.


Table of Contents

  1. Installation
  2. Project Management
  3. Agent Commands
  4. Optimization Commands
  5. Dataset Commands
  6. Model Management
  7. Orchestra Commands
  8. Marketplace Commands
  9. Observability Commands
  10. Advanced Usage

Installation

Quick Install

# Using uv (fastest)
curl -LsSf https://astral.sh/uv/install.sh | sh
uv pip install superoptix

# Using pip
pip install superoptix

# Verify installation
super --version
super --help

Get Documentation

# Open comprehensive docs
super docs

# Show help for any command
super <command> --help
super agent compile --help

Project Management

super init - Initialize Project

# Create new project
super init my_project
cd my_project

# What gets created:
# my_project/
# ├── .super              # Project marker
# ├── agents/             # Agent playbooks
# ├── guardrails/         # Safety rules
# ├── memory/             # Memory modules
# ├── protocols/          # Communication protocols
# ├── teams/              # Multi-agent teams
# ├── evals/              # Evaluation results
# ├── knowledge/          # Knowledge bases
# ├── optimizers/         # Optimization data
# ├── servers/            # Server code
# └── tools/              # Custom tools

Agent Commands

super agent list - List Agents

# List all agents in current project
super agent list

# List pre-built demo agents
super agent list --pre-built

# List agents in specific directory
super agent list --directory ./agents/custom

super agent pull - Download Demo Agents

# Pull demo agent from marketplace
super agent pull sentiment_analyzer      # DSPy demo
super agent pull assistant_openai        # OpenAI SDK demo
super agent pull researcher_crew         # CrewAI demo
super agent pull assistant_adk           # Google ADK demo
super agent pull assistant_microsoft     # Microsoft demo
super agent pull research_agent_deepagents  # DeepAgents demo

# Pull to specific directory
super agent pull sentiment_analyzer --output ./agents/demos/

# List available agents
super market browse agents

super agent compile - Compile Agent

# Compile with default framework (DSPy)
super agent compile my_agent

# Compile with specific framework
super agent compile my_agent --framework dspy
super agent compile my_agent --framework openai
super agent compile my_agent --framework crewai
super agent compile my_agent --framework google-adk
super agent compile my_agent --framework microsoft
super agent compile my_agent --framework deepagents

# Compile with output path
super agent compile my_agent --output ./pipelines/

# Compile with verbose output
super agent compile my_agent --verbose

# Compile multiple agents
super agent compile agent1 agent2 agent3

super agent evaluate - Evaluate Agent

# Evaluate agent (baseline)
super agent evaluate my_agent

# Evaluate optimized version
super agent evaluate my_agent  # automatically loads optimized weights

# Evaluate with specific dataset
super agent evaluate my_agent --dataset ./data/test.csv

# Evaluate with verbose output
super agent evaluate my_agent --verbose

# Save evaluation report
super agent evaluate my_agent --save-report results.json

# Evaluate with specific scenarios
super agent evaluate my_agent --scenarios "scenario1,scenario2"

# Evaluate in CI/CD pipeline
super agent evaluate my_agent --format json --exit-code

super agent optimize - Optimize Agent

# Optimize with auto settings (recommended)
super agent optimize my_agent --auto light      # Quick (5 min)
super agent optimize my_agent --auto medium     # Balanced (15 min) ⭐ Recommended
super agent optimize my_agent --auto intensive  # Thorough (30+ min)

# Optimize with custom settings
super agent optimize my_agent \
  --optimizer GEPA \
  --iterations 10 \
  --metric answer_exact_match

# Optimize with specific LLM for reflection
super agent optimize my_agent \
  --auto medium \
  --reflection-lm qwen3:8b

# Fresh optimization (discard previous)
super agent optimize my_agent --auto medium --fresh

# Continue from previous optimization
super agent optimize my_agent --auto medium --resume

# Optimize with minibatch
super agent optimize my_agent \
  --auto medium \
  --minibatch-size 5

# Skip scenarios with perfect scores
super agent optimize my_agent \
  --auto medium \
  --skip-perfect-score

super agent run - Run Agent

# Run agent interactively
super agent run my_agent

# Run with specific input
super agent run my_agent --input "Analyze this text"

# Run with input from file
super agent run my_agent --input-file ./input.txt

# Run optimized version
super agent run my_agent  # automatically loads optimized weights

# Run with specific framework
super agent run my_agent --framework openai

# Run in batch mode
super agent run my_agent --batch ./inputs.jsonl

# Run with output to file
super agent run my_agent --input "text" --output results.json

super agent design - Design Agent (Studio)

# Launch Studio UI for agent design
super agent design

# Design with specific tier
super agent design --tier oracles    # Simple Q&A
super agent design --tier genies     # With tools & RAG
super agent design --tier protocols  # MCP/A2A support

# Design in specific mode
super agent design --mode visual     # Visual builder
super agent design --mode code       # Code editor

Optimization Commands

super spec generate - Generate Agent from SuperSpec

# Generate agent from natural language description
super spec generate my_agent "Create a sentiment analyzer"

# Generate with template
super spec generate my_agent --template sentiment_analysis

# Generate with RAG
super spec generate my_agent "Q&A agent" --rag

# Generate with specific tier
super spec generate my_agent "Research agent" --tier genies

# Interactive generation
super spec generate

Dataset Commands

super agent dataset - Dataset Management

# Preview dataset
super agent dataset preview my_agent --limit 10

# Validate dataset configuration
super agent dataset validate my_agent

# Get dataset info
super agent dataset info my_agent

# Convert dataset format
super agent dataset convert \
  --input ./data/train.csv \
  --output ./data/train.jsonl \
  --format jsonl

# Split dataset
super agent dataset split \
  --input ./data/all.csv \
  --train ./data/train.csv \
  --test ./data/test.csv \
  --ratio 0.8

# Merge datasets
super agent dataset merge \
  --inputs data1.csv data2.csv data3.csv \
  --output combined.csv

Model Management

super model - Model Commands

# List installed models
super model list

# List all available models
super model list --all

# Install model
super model install llama3.1:8b
super model install llama3.1:8b --backend ollama

# Install with specific backend
super model install llama3.1:8b --backend mlx       # Apple Silicon
super model install llama3.1:8b --backend huggingface
super model install llama3.1:8b --backend lmstudio

# Get model info
super model info llama3.1:8b

# Start model server
super model server --port 11434
super model serve --backend ollama

# Remove model
super model remove llama3.1:8b

Orchestra Commands

super orchestra - Multi-Agent Orchestration

# Create orchestra
super orchestra create my_orchestra

# List orchestras
super orchestra list

# Run orchestra
super orchestra run my_orchestra

# Run with specific input
super orchestra run my_orchestra --input "Complex task"

# Evaluate orchestra
super orchestra evaluate my_orchestra

# Optimize orchestra
super orchestra optimize my_orchestra --auto medium

Marketplace Commands

super market - Marketplace Operations

# Browse agents
super market browse agents

# Browse tools
super market browse tools

# Search marketplace
super market search "sentiment analysis"
super market search "RAG"

# Get agent details
super market info sentiment_analyzer

# Install agent from marketplace
super market install agent sentiment_analyzer

# Install tool from marketplace
super market install tool web_scraper

# Publish your agent (requires account)
super market publish my_agent

# List installed marketplace items
super market list --installed

Observability Commands

super observe - Observability

# Start observability dashboard
super observe

# View specific agent runs
super observe my_agent

# View with specific backend
super observe --backend mlflow
super observe --backend langfuse

# Export metrics
super observe export --format json --output metrics.json

# View logs
super observe logs my_agent

# View performance metrics
super observe metrics my_agent --window 7d

Advanced Usage

Chaining Commands

# Complete workflow in one go
super agent pull sentiment_analyzer && \
super agent compile sentiment_analyzer && \
super agent evaluate sentiment_analyzer && \
super agent optimize sentiment_analyzer --auto medium && \
super agent evaluate sentiment_analyzer && \
super agent run sentiment_analyzer

Using Environment Variables

# Set model configuration
export SUPER_MODEL_PROVIDER=ollama
export SUPER_MODEL_NAME=llama3.1:8b
export SUPER_API_BASE=http://localhost:11434

# Set optimization settings
export SUPER_OPTIMIZER=GEPA
export SUPER_AUTO_MODE=medium

# Set API keys
export OPENAI_API_KEY="your-key"
export ANTHROPIC_API_KEY="your-key"
export GOOGLE_API_KEY="your-key"

# Run with environment config
super agent optimize my_agent

Batch Processing

# Process multiple agents
for agent in agent1 agent2 agent3; do
  super agent compile $agent
  super agent evaluate $agent
  super agent optimize $agent --auto medium
done

# Process with parallel execution
parallel super agent optimize {} --auto medium ::: agent1 agent2 agent3

CI/CD Integration

# In your CI/CD pipeline (GitHub Actions, GitLab CI, etc.)
name: Agent Testing
on: [push, pull_request]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2

      - name: Install SuperOptiX
        run: pip install superoptix

      - name: Compile Agent
        run: super agent compile my_agent

      - name: Evaluate Agent
        run: super agent evaluate my_agent --format json --exit-code

      - name: Upload Results
        uses: actions/upload-artifact@v2
        with:
          name: evaluation-results
          path: results.json

Debugging

# Enable verbose output
super agent compile my_agent --verbose
super agent evaluate my_agent --verbose --debug

# Check logs
super observe logs my_agent --tail 100

# Dry run (show what would happen)
super agent compile my_agent --dry-run

# Show execution plan
super agent run my_agent --explain

Common Workflows

Workflow 1: Quick Start (New Agent)

# 1. Initialize project
super init my_project && cd my_project

# 2. Pull demo agent
super agent pull sentiment_analyzer

# 3. Compile
super agent compile sentiment_analyzer

# 4. Evaluate baseline
super agent evaluate sentiment_analyzer

# 5. Optimize
super agent optimize sentiment_analyzer --auto medium

# 6. Evaluate optimized
super agent evaluate sentiment_analyzer  # automatically loads optimized weights

# 7. Run
super agent run sentiment_analyzer

Workflow 2: Custom Agent Development

# 1. Generate from description
super spec generate my_agent "Analyze customer reviews"

# 2. Edit playbook (manual)
vim agents/my_agent/playbook/my_agent_playbook.yaml

# 3. Compile and test
super agent compile my_agent
super agent evaluate my_agent

# 4. Optimize
super agent optimize my_agent --auto medium

# 5. Deploy
super agent run my_agent

Workflow 3: Multi-Framework Comparison

# Compare same agent across frameworks
for fw in dspy openai crewai; do
  echo "Testing $fw..."
  super agent compile my_agent --framework $fw
  super agent evaluate my_agent
done

Workflow 4: Dataset Import & Training

# 1. Prepare dataset
cat > data/train.csv << EOF
text,label
"Great product!",positive
"Poor quality",negative
EOF

# 2. Configure in playbook
# (add datasets: section)

# 3. Preview
super agent dataset preview my_agent

# 4. Compile with dataset
super agent compile my_agent

# 5. Train with large dataset
super agent optimize my_agent --auto medium

Configuration Files

Global Config: ~/.superoptix/config.yaml

# Default settings
default_framework: dspy
default_optimizer: GEPA
auto_mode: medium

# Model settings
model:
  provider: ollama
  default_model: llama3.1:8b
  api_base: http://localhost:11434

# Optimization settings
optimization:
  default_iterations: 5
  minibatch_size: 3
  skip_perfect_score: true

# Observability
observability:
  backend: mlflow
  tracking_uri: http://localhost:5000

Project Config: .super/config.yaml

# Project-specific settings
project_name: my_project
default_agent: sentiment_analyzer

# Override global settings
default_framework: crewai
auto_mode: intensive

Tips & Tricks

Tip 1: Use Aliases

# Add to ~/.bashrc or ~/.zshrc
alias sac='super agent compile'
alias sae='super agent evaluate'
alias sao='super agent optimize'
alias sar='super agent run'

# Use them
sac my_agent && sae my_agent && sao my_agent --auto medium

Tip 2: Quick Optimization Test

# Test optimization quickly
super agent optimize my_agent --auto light --limit 3

Tip 3: Watch for Changes

# Auto-recompile on file changes
watch -n 2 'super agent compile my_agent'

# Or use entr
ls agents/my_agent/*.yaml | entr super agent compile my_agent

Tip 4: Export Results

# Save evaluation results for comparison
super agent evaluate my_agent --save-report baseline.json
super agent optimize my_agent --auto medium
super agent evaluate my_agent --save-report optimized.json  # automatically loads optimized weights

# Compare
diff baseline.json optimized.json

Troubleshooting

Command Not Found

# Check installation
which super
pip list | grep superoptix

# Reinstall
pip install --upgrade superoptix

Permission Denied

# Run with proper permissions
chmod +x $(which super)

# Or use full path
python -m superoptix.cli.main

API Rate Limits

# Use local models
export SUPER_MODEL_PROVIDER=ollama

# Reduce optimization intensity
super agent optimize my_agent --auto light

Getting Help

# General help
super --help

# Command-specific help
super agent --help
super agent compile --help
super agent optimize --help

# Show version
super --version
super -v

# Check documentation
super docs

Next Steps


Status: Complete CLI Reference ✅
Commands: All major commands documented ✅
Examples: Practical workflows included ✅