๐ LangFuse Integration Guide
Learn how to integrate SuperOptiX with LangFuse for comprehensive LLM observability, tracing, and performance monitoring. This guide covers the complete setup process from installation to production deployment.
๐ฏ Overview
LangFuse is a modern observability platform specifically designed for LLM applications. This integration provides:
- Real-time LLM tracing with detailed token usage
- Performance monitoring and cost tracking
- User feedback collection and evaluation
- A/B testing for different agent configurations
- Production debugging with full trace visibility
๐ Installation & Setup
Step 1: Install LangFuse Python SDK
# Install LangFuse Python SDK
pip install langfuse
# Verify installation
python -c "import langfuse; print('LangFuse SDK installed successfully')"
Step 2: Set Up LangFuse Locally
Create a docker-compose.yml
file for local LangFuse deployment:
# docker-compose.yml
version: '3.8'
services:
langfuse:
image: langfuse/langfuse:latest
container_name: langfuse
ports:
- "3000:3000"
environment:
- LANGFUSE_SECRET_KEY=your-secret-key
- LANGFUSE_PUBLIC_KEY=your-public-key
- LANGFUSE_HOST=http://localhost:3000
volumes:
- langfuse_data:/app/data
restart: unless-stopped
volumes:
langfuse_data:
Start LangFuse locally:
# Start LangFuse with Docker Compose
docker compose up -d
# Verify LangFuse is running
curl http://localhost:3000/api/public/health
Expected output:
Step 3: Initialize SuperOptiX Project
# Initialize new SuperOptiX project
super init langfuse_demo
cd langfuse_demo
# Pull developer agent with Genies tier
super agent pull developer --tier genies
Expected output:
๐ Enhancing agent 'developer' for Genies tier...
โ
Model configured for Genies tier: llama3.1:8b
โ
ReAct configuration added
โ
Default toolset added (calculator, text_analyzer, file_reader)
โ
Memory system configured
โ
Preserving optimization and testing sections
================================================================================
๐ค Adding agent 'developer'...
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ AGENT ADDED SUCCESSFULLY! Pre-built Agent Ready โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Step 4: Configure LangFuse Observability
Update the agent playbook (langfuse_demo/agents/developer/playbook/developer_playbook.yaml
) to include LangFuse configuration:
# Add this section to your agent playbook
observability:
enabled: true
backends:
- langfuse
langfuse:
public_key: "pk-lf-5218b891-1fd7-4b59-9ce6-4dcfb66c2414" # Your public key
secret_key: "sk-lf-xxxxxx" # Your secret key
host: "http://localhost:3000"
project: "superoptix-agents"
tags:
agent_type: "developer"
tier: "genies"
environment: "development"
Step 5: Compile Agent with LangFuse Support
Expected output:
๐จ Compiling agent 'developer'...
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โก Compilation Details โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ ๐ค COMPILATION IN PROGRESS โ
โ โ
โ ๐ฏ Agent: Developer Assistant โ
โ ๐๏ธ Framework: DSPy (default) Junior Pipeline โ other frameworks coming soon
โ
โ ๐ง Process: YAML playbook โ Executable Python pipeline โ
โ ๐ Output: langfuse_demo/agents/developer/pipelines/developer_pipeline.py โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โ
Successfully generated Genies-tier pipeline (mixin) at:
/Users/shashi/superagentic/SuperOptiX/langfuse_demo/langfuse_demo/agents/developer/pipelines/developer_pipeline.py
๐งช Testing the Integration
Step 1: Create LangFuse Integration Test
Create test_langfuse_integration.py
:
#!/usr/bin/env python3
"""
Test LangFuse Integration with SuperOptiX
This script demonstrates how to use LangFuse with the local instance.
"""
from langfuse import Langfuse
import json
from datetime import datetime
def test_langfuse_integration():
"""Test LangFuse integration with local instance."""
# Initialize LangFuse client for local instance
langfuse = Langfuse(
public_key="pk-lf-xxxxx",
secret_key="sk-lf-c172306b-0e77-47a3-b365-07314c6c40e0",
host="http://localhost:3000"
)
print("๐งช Testing LangFuse integration with local instance")
try:
# Create a trace using context manager
with langfuse.start_as_current_span(
name="superoptix_agent_execution",
metadata={
"agent_type": "developer",
"tier": "genies",
"model": "llama3.1:8b"
}
) as trace:
print(f"โ
Created trace: {langfuse.get_current_trace_id()}")
# Create a generation span for model call
with langfuse.start_as_current_generation(
name="llm_call",
model="llama3.1:8b",
input={
"prompt": "Write a Python function to calculate factorial",
"temperature": 0.1
},
model_parameters={
"temperature": 0.1,
"max_tokens": 500
}
) as generation:
print(f"โ
Created generation span: {langfuse.get_current_observation_id()}")
# Simulate model response
response = "def factorial(n):\n if n <= 1:\n return 1\n return n * factorial(n-1)"
# Update generation with output
generation.update(
output=response,
usage_details={
"prompt_tokens": 10,
"completion_tokens": 45
}
)
# Score the generation
langfuse.score_current_span(
name="code_quality",
value=0.85,
comment="Good code quality with proper recursion"
)
langfuse.score_current_span(
name="execution_time",
value=2.5,
comment="Fast execution time"
)
print("โ
Logged scores")
# Score the overall trace
langfuse.score_current_trace(
name="overall_quality",
value=0.9,
comment="High quality agent execution"
)
print("โ
Completed trace successfully")
# Force flush to ensure data is sent
langfuse.flush()
print("๐ Trace data sent to LangFuse successfully")
return True
except Exception as e:
print(f"โ Error testing LangFuse: {e}")
return False
def check_langfuse_connection():
"""Check if LangFuse server is accessible."""
try:
import requests
response = requests.get("http://localhost:3000/api/public/health")
if response.status_code == 200:
print("โ
LangFuse server is running and accessible")
return True
else:
print(f"โ LangFuse server returned status code: {response.status_code}")
return False
except Exception as e:
print(f"โ Cannot connect to LangFuse server: {e}")
return False
if __name__ == "__main__":
print("๐งช SuperOptiX LangFuse Integration Test")
print("=" * 50)
# Check LangFuse connection
if check_langfuse_connection():
# Run the test
success = test_langfuse_integration()
if success:
print(f"\n๐ Test completed successfully!")
print(f"๐ View results at: http://localhost:3000")
else:
print(f"\nโ Test failed")
else:
print("\nโ LangFuse server is not accessible.")
print(" Make sure Docker is running and LangFuse is started:")
print(" docker compose up -d")
Step 2: Run the Integration Test
Expected output:
๐งช SuperOptiX LangFuse Integration Test
==================================================
โ
LangFuse server is running and accessible
๐งช Testing LangFuse integration with local instance
โ
Created trace: 5ec5a318e2d5fe2069d826866ce8624e
โ
Created generation span: fcb95e33f3176269
โ
Logged scores
โ
Completed trace successfully
๐ Trace data sent to LangFuse successfully
๐ Test completed successfully!
๐ View results at: http://localhost:3000
Step 3: Test SuperOptiX Agent with LangFuse
# Run agent with LangFuse tracing enabled
super agent run developer --goal "Write a Python function to calculate the Fibonacci sequence"
Expected output:
๐ Running agent 'developer'...
๐ Tracing enabled for agent developer_20250714_212620
๐ Traces will be stored in: /Users/shashi/superagentic/SuperOptiX/langfuse_demo/.superoptix/traces
๐ Configuring llama3.1:8b with ollama for genies-tier capabilities
โ
Model connection successful: ollama/llama3.1:8b
โ
3 tools configured successfully
โ
ReAct agent configured with 3 tools
๐ Loaded 5 BDD specifications for execution
โ
DeveloperPipeline (Genie tier) initialized with ReAct and 5 BDD scenarios
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Agent Execution โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ค Running Developer Pipeline โ
โ โ
โ Executing Task: Write a Python function to calculate the Fibonacci sequence โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Aspect โ Value โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ Implementation โ Python function implementation with proper logic โ
โ Reasoning โ Step-by-step reasoning process with tool usage โ
โ Success โ True โ
โ Execution_Time โ 18.71 seconds โ
โ Agent_Id โ developer_20250714_212620 โ
โ Tier โ genies โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ Agent execution completed successfully!
Step 4: Check Observability Data
Expected output:
๐ Available Agents with Traces
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโ
โ Agent ID โ Trace Count โ Last Activity โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ developer โ 2 โ 2025-07-14 21:26:39 โ
โ developer_20250714_212620 โ 23 โ 2025-07-14 21:26:39 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโ
Expected output:
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Trace Check Configuration โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ Pipeline Trace Analysis โ
โ โ
โ Agent ID: All agents โ
โ Run Test: No โ
โ Check DSPy: No โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐ Checking for trace files...
โ
Found 6 potential trace files:
๐ .superoptix/traces (224 bytes)
๐ .superoptix/traces/developer_20250714_212748.jsonl (8684 bytes)
๐ .superoptix/traces/developer_20250714_212620.jsonl (11356 bytes)
๐ .superoptix/traces/developer_20250714_212830.jsonl (7719 bytes)
๐ .superoptix/traces/developer.jsonl (9340 bytes)
๐ .superoptix/traces/developer_20250714_212809.jsonl (8297 bytes)
โ
SuperOptiX trace directory found: .superoptix/traces
๐ Found 5 trace files
๐ Demo Results
Comprehensive Demo Script
Create demo_langfuse_superoptix.py
for a complete demonstration:
#!/usr/bin/env python3
"""
Comprehensive LangFuse Integration Demo with SuperOptiX
This script demonstrates the complete LangFuse integration workflow.
"""
import subprocess
import time
import json
import os
from datetime import datetime
def run_command(command, description):
"""Run a command and return the result."""
print(f"\n๐ง {description}")
print(f"Command: {command}")
print("-" * 50)
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
print(f"Exit Code: {result.returncode}")
if result.stdout:
print("Output:")
print(result.stdout)
if result.stderr:
print("Errors:")
print(result.stderr)
return result.returncode == 0
except Exception as e:
print(f"Error running command: {e}")
return False
def check_langfuse_status():
"""Check if LangFuse is running."""
print("๐ Checking LangFuse Status")
print("=" * 50)
# Check if Docker containers are running
result = subprocess.run("docker ps --filter 'name=langfuse' --format 'table {{.Names}}\t{{.Status}}'",
shell=True, capture_output=True, text=True)
if "langfuse" in result.stdout:
print("โ
LangFuse containers are running:")
print(result.stdout)
return True
else:
print("โ LangFuse containers are not running")
print("Starting LangFuse...")
run_command("docker compose up -d", "Starting LangFuse with Docker Compose")
time.sleep(10) # Wait for services to start
return True
def demo_langfuse_integration():
"""Demonstrate LangFuse integration with SuperOptiX."""
print("\n๐ LangFuse Integration Demo")
print("=" * 50)
# Step 1: Check LangFuse status
if not check_langfuse_status():
print("โ Failed to start LangFuse")
return False
# Step 2: Run the LangFuse test script
print("\n๐ Step 1: Testing LangFuse API Integration")
success = run_command("python test_langfuse_integration.py",
"Running LangFuse API integration test")
if not success:
print("โ LangFuse API test failed")
return False
# Step 3: Run SuperOptiX agent with LangFuse observability
print("\n๐ค Step 2: Running SuperOptiX Agent with LangFuse")
goals = [
"Write a Python function to calculate the sum of all even numbers in a list",
"Create a simple web scraper function in Python",
"Write a function to validate email addresses using regex"
]
for i, goal in enumerate(goals, 1):
print(f"\n๐ฏ Running agent with goal {i}: {goal}")
success = run_command(f'super agent run developer --goal "{goal}"',
f"Running agent with goal {i}")
if not success:
print(f"โ Agent execution {i} failed")
continue
# Wait a bit between runs
time.sleep(2)
# Step 4: Check observability data
print("\n๐ Step 3: Checking Observability Data")
# List agents with traces
run_command("super observe list", "Listing agents with traces")
# Check trace configuration
run_command("super observe check", "Checking trace configuration")
# Analyze performance
run_command("super observe analyze", "Analyzing agent performance")
# Step 5: Show LangFuse UI information
print("\n๐ Step 4: LangFuse UI Access")
print("=" * 50)
print("โ
LangFuse is running locally!")
print("๐ Access the LangFuse UI at: http://localhost:3000")
print("๐ View traces, spans, and generations in real-time")
print("๐ Monitor agent performance and quality metrics")
print("๐ Debug and analyze agent behavior")
return True
def create_demo_summary():
"""Create a summary of the demo."""
print("\n๐ Demo Summary")
print("=" * 50)
summary = {
"demo_name": "LangFuse Integration with SuperOptiX",
"date": datetime.now().isoformat(),
"components_tested": [
"LangFuse local instance setup",
"LangFuse Python SDK integration",
"SuperOptiX agent execution with tracing",
"Observability data collection",
"Performance analysis"
],
"key_features": [
"Real-time trace collection",
"Span and generation tracking",
"Performance metrics",
"Quality scoring",
"Debugging capabilities"
],
"next_steps": [
"Explore traces in LangFuse UI",
"Set up custom scoring metrics",
"Configure alerts and notifications",
"Integrate with production workflows",
"Set up team collaboration features"
]
}
print(json.dumps(summary, indent=2))
# Save summary to file
with open("langfuse_demo_summary.json", "w") as f:
json.dump(summary, f, indent=2)
print(f"\n๐พ Demo summary saved to: langfuse_demo_summary.json")
def main():
"""Main demo function."""
print("๐ LangFuse + SuperOptiX Integration Demo")
print("=" * 60)
print("This demo showcases the complete integration between")
print("LangFuse observability platform and SuperOptiX agents.")
print("=" * 60)
# Run the demo
success = demo_langfuse_integration()
if success:
print("\nโ
Demo completed successfully!")
create_demo_summary()
print("\n๐ฏ What's Next?")
print("-" * 30)
print("1. ๐ Open http://localhost:3000 to explore traces")
print("2. ๐ Analyze agent performance in LangFuse UI")
print("3. ๐ง Configure custom metrics and alerts")
print("4. ๐ Deploy to production with real API keys")
print("5. ๐ฅ Set up team collaboration features")
else:
print("\nโ Demo encountered issues")
print("Check the output above for error details")
print("\n" + "=" * 60)
print("๐ Thank you for trying LangFuse + SuperOptiX integration!")
if __name__ == "__main__":
main()
Run the Comprehensive Demo
๐ Results Achieved
Trace Collection Statistics
๐ Available Agents with Traces
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโ
โ Agent ID โ Trace Count โ Last Activity โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ developer โ 8 โ 2025-07-14 21:28:52 โ
โ developer_20250714_212620 โ 23 โ 2025-07-14 21:26:39 โ
โ developer_20250714_212748 โ 23 โ 2025-07-14 21:28:03 โ
โ developer_20250714_212809 โ 23 โ 2025-07-14 21:28:24 โ
โ developer_20250714_212830 โ 20 โ 2025-07-14 21:28:52 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโ
Agent Performance Metrics
โโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Aspect โ Value โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ Implementation โ Python function implementation with proper logic โ
โ Reasoning โ Step-by-step reasoning process with tool usage โ
โ Success โ True โ
โ Execution_Time โ 15.53 seconds โ
โ Agent_Id โ developer_20250714_212748 โ
โ Tier โ genies โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
API Integration Test Results
๐งช SuperOptiX LangFuse Integration Test
==================================================
โ
LangFuse server is running and accessible
๐งช Testing LangFuse integration with local instance
โ
Created trace: 5ec5a318e2d5fe2069d826866ce8624e
โ
Created generation span: fcb95e33f3176269
โ
Logged scores
โ
Completed trace successfully
๐ Trace data sent to LangFuse successfully
๐ Test completed successfully!
๐ View results at: http://localhost:3000
๐ LangFuse UI Access
Access the LangFuse Dashboard
Open your browser and navigate to: http://localhost:3000
Available Features in LangFuse UI
- ๐ Real-time Traces: View all agent execution traces
- ๐ Span Analysis: Detailed span and generation information
- ๐ Performance Metrics: Execution time and quality scores
- ๐ฏ Quality Scoring: Custom metrics and evaluations
- ๐ง Debugging Tools: Trace comparison and analysis
- ๐ฅ Team Collaboration: Share traces and insights
๐ง Advanced Configuration
Custom Trace Attributes
Add custom attributes to traces in your agent playbook:
observability:
langfuse:
custom_attributes:
- name: "code_complexity"
type: "number"
description: "Complexity score of generated code"
- name: "user_expertise"
type: "string"
description: "User expertise level"
- name: "task_difficulty"
type: "number"
description: "Task difficulty rating"
User Feedback Integration
Collect and track user feedback:
observability:
langfuse:
feedback:
enabled: true
score_range: [1, 5]
comment_enabled: true
categories:
- "accuracy"
- "helpfulness"
- "code_quality"
A/B Testing Support
Configure A/B testing for different agent configurations:
observability:
langfuse:
ab_testing:
enabled: true
variants:
- name: "baseline"
config:
temperature: 0.7
model: "llama3.1:8b"
- name: "optimized"
config:
temperature: 0.5
model: "llama3.1:70b"
๐ Production Deployment
Environment Configuration
Set up production environment variables:
# Production environment
export LANGFUSE_PUBLIC_KEY="your-production-public-key"
export LANGFUSE_SECRET_KEY="your-production-secret-key"
export LANGFUSE_HOST="https://cloud.langfuse.com"
export LANGFUSE_PROJECT="production-agents"
LangFuse Cloud Setup
- Sign up at cloud.langfuse.com
- Create a new project for your SuperOptiX agents
- Get your API keys from the project settings
- Update your agent playbook with production keys
- Deploy your agents with LangFuse integration
Kubernetes Integration
For production deployments, use Kubernetes secrets:
# langfuse-secret.yaml
apiVersion: v1
kind: Secret
metadata:
name: langfuse-credentials
type: Opaque
data:
public-key: <base64-encoded-public-key>
secret-key: <base64-encoded-secret-key>
๐ง Troubleshooting
Common Issues
1. LangFuse Server Not Accessible
# Check if Docker containers are running
docker ps --filter 'name=langfuse'
# Restart LangFuse if needed
docker compose down
docker compose up -d
2. Authentication Errors
# Verify API keys
curl -H "Authorization: Bearer your-secret-key" \
http://localhost:3000/api/public/traces
3. Missing Traces
# Enable debug logging in your agent playbook
observability:
langfuse:
debug: true
log_level: "DEBUG"
flush_interval: 5 # seconds
Debug Mode
Enable comprehensive debugging:
observability:
langfuse:
debug: true
log_level: "DEBUG"
verbose: true
test_mode: true # For development
๐ Cost Tracking
Token Usage Monitoring
Track and optimize token usage:
# Cost analysis script
def analyze_costs():
traces = langfuse.get_traces(limit=1000)
total_cost = sum(trace.cost for trace in traces)
total_tokens = sum(trace.input_tokens + trace.output_tokens for trace in traces)
print(f"Total cost: ${total_cost:.4f}")
print(f"Total tokens: {total_tokens:,}")
print(f"Cost per token: ${total_cost/total_tokens:.6f}")
Cost Optimization
Implement cost optimization strategies:
observability:
langfuse:
cost_optimization:
enabled: true
alerts:
cost_threshold: 0.05 # $0.05 per request
token_threshold: 2000 # 2000 tokens per request
recommendations:
enabled: true
model_switching: true
prompt_optimization: true
๐ Related Resources
- Observability Guide - Complete observability overview
- MLFlow Integration Guide - MLFlow observability integration
- Agent Development - Build custom agents
- LangFuse Documentation - Official LangFuse docs
- SuperOptiX CLI Reference - CLI commands reference
๐ฏ Next Steps
- Set up LangFuse Cloud account and get production API keys
- Configure agent playbooks with LangFuse integration
- Monitor agent performance through LangFuse dashboard
- Set up cost tracking and optimization alerts
- Implement user feedback collection
- Scale to production with robust monitoring
๐ Choosing Between MLFlow and LangFuse
Both MLFlow and LangFuse provide excellent observability for SuperOptiX agents, but they serve different use cases:
๐งช MLFlow - Best for:
- ML Experiment Tracking: Traditional ML workflows and experiments
- Artifact Management: Code, models, and data versioning
- Reproducibility: Detailed experiment tracking and comparison
- Team Collaboration: Experiment sharing and model registry
- Production ML: Model deployment and lifecycle management
๐ LangFuse - Best for:
- LLM Observability: Specialized for language model applications
- Real-time Tracing: Detailed token usage and cost tracking
- User Feedback: Built-in feedback collection and scoring
- A/B Testing: LLM prompt and model comparison
- Production LLM: Live monitoring and debugging
๐ Quick Comparison
Feature | MLFlow | LangFuse |
---|---|---|
Primary Focus | ML Experiments | LLM Observability |
Token Tracking | Manual | Automatic |
Cost Tracking | Manual | Built-in |
User Feedback | Manual | Native |
A/B Testing | Manual | Built-in |
Real-time UI | Limited | Excellent |
Artifact Storage | Excellent | Good |
Experiment Tracking | Excellent | Good |
๐ฏ When to Use Each
Choose MLFlow if: - You're doing traditional ML experiments - You need detailed artifact versioning - You want to track model performance over time - You're building ML pipelines
Choose LangFuse if: - You're building LLM applications - You need real-time cost tracking - You want user feedback integration - You're doing prompt engineering - You need A/B testing for LLMs
๐ Successfully demonstrated LangFuse + SuperOptiX integration!
The integration provides comprehensive observability for AI agents with real-time tracing, performance monitoring, and quality metrics. This enables better debugging, optimization, and monitoring of SuperOptiX agents in production environments.