🚀 Agent Optimization Strategy
SuperOptiX provides universal optimization across all 6 major agent frameworks using GEPA (Genetic-Pareto) as the primary optimizer.
🌟 Key Achievement: The world's first framework-agnostic optimizer that delivers proven results across DSPy, OpenAI SDK, CrewAI, Google ADK, Microsoft Agent Framework, and DeepAgents!
Overview
Agent optimization in SuperOptiX follows a GEPA-first strategy that works seamlessly across all supported frameworks:
- 🔧 Universal Optimizer: Same GEPA optimizer works for all frameworks
- 📊 Proven Results: DSPy 37.5% → 80%, OpenAI/CrewAI 100% pass rates
- ⚡ Sample Efficient: Achieves improvements with just 3-10 scenarios
- 🎯 Framework Agnostic: Build with any framework, optimize with one tool
- 🔄 Consistent Workflow: Same commands work regardless of framework
🎯 GEPA: The Universal Optimization Strategy
Why GEPA-First?
GEPA (Genetic-Pareto) is SuperOptiX's universal optimizer that delivers consistent results across all frameworks:
| Framework | Variables Optimized | Proven Results | Status |
|---|---|---|---|
| 🔬 DSPy | 10+ variables | 37.5% → 80% (+42.5 pts) | ✅ Proven |
| 🤖 OpenAI SDK | 1 variable (instructions) | 100% pass rate | ✅ Proven |
| 👥 CrewAI | 5 variables (role+goal+backstory+task) | 100% pass rate | ✅ Proven |
| 🔮 Google ADK | 1 variable (instruction) | Ready for optimization | ✅ Ready |
| 🏢 Microsoft | 1 variable (instructions) | Ready for optimization | ✅ Ready |
| 🌊 DeepAgents | 1 variable (system_prompt) | Ready for optimization | ✅ Ready |
GEPA's Advantages
🔧 Framework Agnostic: The ONLY optimizer that works across all major frameworks 📊 Sample Efficiency: Achieves significant improvements with just 3-10 scenarios 🎯 Domain Adaptable: Incorporates domain-specific feedback effectively 💡 Interpretable: Generates human-readable prompt improvements 🔄 Multi-Objective: Optimizes for multiple criteria simultaneously
🚀 Universal Optimization Workflow
Step 1: Choose Your Framework & Pull Agent
super agent pull sentiment_analyzer
super agent compile sentiment_analyzer
super agent evaluate sentiment_analyzer
super agent pull assistant_openai
super agent compile assistant_openai
super agent evaluate assistant_openai
super agent pull researcher_crew
super agent compile researcher_crew
super agent evaluate researcher_crew
super agent pull assistant_adk
super agent compile assistant_adk
super agent evaluate assistant_adk
super agent pull assistant_microsoft
super agent compile assistant_microsoft
super agent evaluate assistant_microsoft
super agent pull research_agent_deepagents
super agent compile research_agent_deepagents
super agent evaluate research_agent_deepagents
Step 2: Optimize with GEPA (Same Command for ALL!)
# Universal GEPA command - works on ANY framework!
super agent optimize <agent_name> --auto medium
# Examples for each framework:
super agent optimize sentiment_analyzer --auto medium # DSPy
super agent optimize assistant_openai --auto medium # OpenAI SDK
super agent optimize researcher_crew --auto medium # CrewAI
super agent optimize assistant_adk --auto medium # Google ADK
super agent optimize assistant_microsoft --auto medium # Microsoft
super agent optimize research_agent_deepagents --auto medium # DeepAgents
Step 3: Evaluate & Deploy
# Evaluate optimized version
super agent evaluate <agent_name> # automatically loads optimized weights
# Run in production
super agent run <agent_name>
⚙️ GEPA Configuration Options
Automatic Mode (Recommended) ⭐
# Works for ANY framework!
super agent optimize <agent_name> --auto [light|medium|intensive]
Optimization Levels:
- light: Quick optimization (2-3 iterations, ~5 minutes)
- medium: Balanced optimization (5 iterations, ~10-15 minutes) ⭐ Recommended
- intensive: Thorough optimization (10+ iterations, ~30+ minutes)
Manual Configuration
super agent optimize <agent_name> --optimizer gepa --max-iterations 5
Advanced Configuration (via playbook)
Works for all frameworks! Edit your agent playbook:
spec:
optimization:
optimizer:
name: GEPA
params:
metric: answer_exact_match # Evaluation metric
auto: medium # Budget: light, medium, intensive
reflection_lm: qwen3:8b # Model for reflection
reflection_minibatch_size: 3 # Examples per reflection
skip_perfect_score: true # Skip if already perfect
📊 Optimization Results by Framework
DSPy: Sentiment Analysis Agent
Framework: DSPy (Stanford Research Framework)
Variables Optimized: 10+ (signature instructions, field descriptions, reasoning steps, etc.)
Before GEPA:
Pass Rate: 37.5% (3/8 scenarios)
After GEPA Optimization (5 iterations, medium mode):
Pass Rate: 80.0% (6.5/8 scenarios)
Improvement: +42.5 percentage points 🏆
What GEPA Improved: - Better nuanced sentiment identification - Improved sarcasm and context handling - More accurate confidence scores - Clearer reasoning chains
OpenAI SDK: AI Assistant
Framework: OpenAI Agents SDK
Variables Optimized: 1 (instructions)
Before GEPA:
Pass Rate: 100% (4/4 scenarios)
After GEPA Optimization:
Pass Rate: 100% (4/4 scenarios)
Improvement: Maintained excellence ✅
What GEPA Improved: - Enhanced response quality and clarity - Better instruction following - More consistent behavior patterns - Improved instruction structure
CrewAI: Research Crew (Phase 2)
Framework: CrewAI (Multi-Agent Collaboration)
Variables Optimized: 5 (role, goal, backstory, task description, expected output)
Before GEPA:
Pass Rate: 75% (3/4 scenarios)
After GEPA Optimization (combined agent+task optimization):
Pass Rate: 100% (4/4 scenarios)
Improvement: +25 percentage points ⭐
What GEPA Improved: - Clearer role definitions - Better goal alignment with tasks - Improved agent-task coordination - Enhanced task output quality - Better multi-agent collaboration patterns
🎯 When to Use Alternative Optimizers
While GEPA is recommended for most cases, here are alternatives for specific scenarios:
SIMBA (DSPy Only)
Use When: Large datasets, performance-critical applications
super agent optimize <agent> --optimizer simba
MIPROv2 (DSPy Only)
Use When: Instruction-following tasks, multi-step workflows
super agent optimize <agent> --optimizer miprov2
BootstrapFewShot (DSPy Only)
Use When: Getting started, limited training data
super agent optimize <agent> --optimizer bootstrapfewshot
📈 Best Practices
1. Always Establish Baseline
# CRITICAL: Always evaluate before optimizing
super agent evaluate <agent_name>
2. Start with Medium Budget
# Start with balanced optimization
super agent optimize <agent_name> --auto medium
# Increase if results justify cost
super agent optimize <agent_name> --auto intensive
3. Validate Improvements
# Always re-evaluate after optimization
super agent evaluate <agent_name> # automatically loads optimized weights
4. Use Quality Training Scenarios
feature_specifications:
scenarios:
- name: comprehensive_test
description: Cover main patterns and edge cases
input:
problem: "Well-defined, realistic problem"
expected_output:
answer: "Complete expected response with reasoning"
5. Monitor Resource Usage
Memory Requirements: - GEPA: ~25GB peak (main model + reflection model) - Local Models: Ollama works great for free optimization - Cloud Models: Monitor API usage for cost control
🔧 Troubleshooting
Common Issues
Issue: "Optimization failed" Solution: Check BDD scenarios are well-defined and evaluable
Issue: "Memory error"
Solution: Use --auto light or switch to smaller models
Issue: "No improvement after optimization" Solution: Check evaluation metrics and scenario quality
Performance Tips
- Local Models: Use Ollama for free, unlimited optimization
- Cloud Models: Start with
lightbudget to test effectiveness - Batch Processing: Run multiple agents in parallel for efficiency
🚀 Next Steps
After optimization:
- Deploy: Use
super agent runwith optimized weights - Monitor: Track performance in production
- Iterate: Re-optimize when adding new scenarios
- Scale: Apply same workflow to other frameworks
Learn More: - GEPA Optimization Guide - Detailed GEPA documentation - Multi-Framework Support - Framework comparisons - Evaluation & Testing - Testing strategies