🚀 vLLM Production Inference
vLLM High-Performance Inference
Production-grade LLM serving with vLLM
🎯 What is vLLM?
vLLM is a high-throughput and memory-efficient inference and serving engine for Large Language Models (LLMs). It's designed for production deployments with:
- High Throughput: Serve multiple requests efficiently with continuous batching
- Memory Efficiency: PagedAttention algorithm reduces memory usage
- Production Ready: Built for scale and reliability
- OpenAI Compatible: Drop-in replacement for OpenAI API
✅ Advantages
|
🎯 Best For
|
🚀 Installation
Option 1: pip (Recommended)
# Install vLLM
pip install vllm
# For CUDA 12.1
pip install vllm
# For CUDA 11.8
pip install vllm --extra-index-url https://download.pytorch.org/whl/cu118
Option 2: Docker
# Pull vLLM Docker image
docker pull vllm/vllm-openai:latest
# Run vLLM server
docker run --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model meta-llama/Llama-3-8B-Instruct
🔧 Configuration
Start vLLM Server
# Basic vLLM server
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--port 8000
# With advanced settings
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--port 8000 \
--tensor-parallel-size 2 \
--gpu-memory-utilization 0.9 \
--max-model-len 4096
SuperOptiX Configuration
spec:
language_model:
provider: openai # vLLM is OpenAI API compatible
model: meta-llama/Llama-3-8B-Instruct
api_base: http://localhost:8000/v1
api_key: "dummy" # vLLM doesn't require real API key
temperature: 0.7
max_tokens: 1000
📊 Performance Comparison
| Engine | Throughput | Memory | Latency |
| vLLM | 24x ⭐ | Low ✅ | Fast ✅ |
| HuggingFace | 1x (baseline) | High | Moderate |
| Ollama | 5x | Medium | Fast |
🔬 Advanced Configuration
Tensor Parallelism (Multi-GPU)
# Use 4 GPUs
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-70B-Instruct \
--tensor-parallel-size 4 \
--port 8000
Quantization for Memory Efficiency
# AWQ 4-bit quantization
python -m vllm.entrypoints.openai.api_server \
--model TheBloke/Llama-2-70B-AWQ \
--quantization awq \
--port 8000
# GPTQ quantization
python -m vllm.entrypoints.openai.api_server \
--model TheBloke/Llama-2-70B-GPTQ \
--quantization gptq \
--port 8000
Custom Sampling Parameters
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--max-model-len 8192 \
--gpu-memory-utilization 0.95 \
--max-num-seqs 256 \
--port 8000
📝 SuperOptiX Integration Example
apiVersion: agent/v1
kind: AgentSpec
metadata:
name: vllm_production_agent
id: vllm_production_agent
namespace: production
version: 1.0.0
level: genies
spec:
target_framework: dspy
language_model:
provider: openai # vLLM is OpenAI compatible
model: meta-llama/Llama-3-8B-Instruct
api_base: http://localhost:8000/v1
api_key: "dummy"
temperature: 0.7
max_tokens: 2000
persona:
role: Production AI Assistant
goal: Provide fast, reliable responses at scale
input_fields:
- name: query
type: str
output_fields:
- name: response
type: str
feature_specifications:
scenarios:
- name: Performance test
input:
query: "Explain vLLM benefits"
expected_output:
response: "vLLM explanation"
🔄 Usage with SuperOptiX CLI
# Initialize project
super init vllm_project
cd vllm_project
# Start vLLM server (in background)
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--port 8000 &
# Create agent with vLLM
super agent pull assistant_openai
# Update playbook to use vLLM endpoint
# Edit agents/demo/assistant_openai_playbook.yaml:
# language_model:
# provider: openai
# api_base: http://localhost:8000/v1
# Compile and run
super agent compile assistant_openai
super agent run assistant_openai --goal "Hello from vLLM!"
📈 Benchmarks
| Model Size | vLLM Tokens/sec | HuggingFace Tokens/sec | Speedup |
| 7B | ~1500 | ~150 | 10x ⚡ |
| 13B | ~1000 | ~100 | 10x ⚡ |
| 70B | ~300 | ~15 | 20x 🚀 |
🎯 Use Cases
🏢Enterprise APIsServe thousands of users simultaneously with high throughput |
🤖Multi-Agent SystemsRun multiple agents efficiently with batch processing |
⚡Real-Time ApplicationsLow-latency inference for interactive applications |
🔬 Advanced Features
PagedAttention
vLLM's revolutionary memory management:
# PagedAttention automatically manages KV cache
# No configuration needed - it just works!
Continuous Batching
# vLLM automatically batches incoming requests
# Optimal throughput without manual tuning
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--max-num-seqs 256 # Max concurrent sequences
Speculative Decoding
# Use smaller model for speculation, larger for verification
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-70B-Instruct \
--speculative-model meta-llama/Llama-3-8B-Instruct \
--num-speculative-tokens 5
🌐 Deployment
Production Deployment
# Production settings
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-3-8B-Instruct \
--host 0.0.0.0 \
--port 8000 \
--tensor-parallel-size 4 \
--gpu-memory-utilization 0.9 \
--max-num-seqs 256 \
--disable-log-requests
Docker Compose
version: '3.8'
services:
vllm:
image: vllm/vllm-openai:latest
ports:
- "8000:8000"
volumes:
- ~/.cache/huggingface:/root/.cache/huggingface
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
command: >
--model meta-llama/Llama-3-8B-Instruct
--tensor-parallel-size 2
--gpu-memory-utilization 0.9
🚀 Next Steps
📚 Resources
- Official Documentation: https://docs.vllm.ai
- GitHub: https://github.com/vllm-project/vllm
- Paper: "Efficient Memory Management for Large Language Model Serving with PagedAttention"