SuperOptiX CLI Reference
Welcome to the comprehensive SuperOptiX CLI reference! This document covers all available commands, their options, and usage examples, reflecting the actual implementation.
Table of Contents
- Getting Started
- Core Commands
- init
- docs
- Agent Management (
agent
orag
) - agent pull
- agent compile
- agent design
- agent inspect
- agent lint
- agent list
- agent optimize
- agent evaluate
- agent run
- agent rm
- agent tier-status
- Model Intelligence System (
model
ormd
) - model list
- model discover
- model guide
- model install
- model run
- model remove
- model refresh
- model info
- model backends
- model dspy
- model server
- SuperSpec DSL (
spec
) - spec generate
- spec validate
- spec analyze
- spec info
- spec schema
- spec bootstrap
- Orchestra Management (
orchestra
ororch
) - orchestra create
- orchestra list
- orchestra run
- Marketplace (
marketplace
,market
ormk
) - marketplace
- marketplace browse
- marketplace search
- marketplace show
- marketplace featured
- marketplace install
- Observability (
observe
orob
) - observe dashboard
- observe traces
- observe check
- observe analyze
- observe list
- observe debug
Getting Started
Basic Workflow
# 1. Initialize a new project
super init my_project
cd my_project
# 2. Generate an agent using SuperSpec DSL
super spec generate genies developer --namespace software
# 3. Compile the agent
super agent compile developer
# 4. Evaluate the agent
super agent evaluate developer
# 5. Run the agent
super agent run developer --goal "Implement a basic calculator"
Quick Reference
# Project management
super init <project_name> # Initialize new project
super docs # Show comprehensive guide
# Agent lifecycle
super agent pull <name> # Add pre-built agent
super agent compile <name> # Compile agent to Python
super agent evaluate <name> # Test agent with BDD
super agent run <name> --goal <goal> # Execute agent
super agent list # List project agents
# Model management
super model list # List installed models
super model install <model> # Install model
super model run <model> <prompt> # Run model with auto-installation
super model remove <model> # Remove model
super model refresh # Refresh model cache
super model server <backend> <model> # Start local server
# DSL and development
super spec generate <tier> <name> # Generate agent playbook
super spec validate <file> # Validate playbook
super spec analyze <path> # Analyze playbooks
# Multi-agent workflows
super orchestra create <name> # Create orchestra
super orchestra run <name> --goal <goal> # Run orchestra
# Discovery and tools
super marketplace # Browse marketplace
super marketplace search <query> # Search components
super marketplace install agent <name> # Install agent
# Monitoring and debugging
super observe dashboard # Launch observability dashboard
super observe traces <agent_id> # View execution traces
Core Commands
init
Initialize a new SuperOptiX project with the complete directory structure.
Arguments:
- project_name
- Name of the agentic system (required)
Options:
- --verbose
- Show detailed project setup information
Example:
docs
Display comprehensive SuperOptiX documentation with examples and getting started information.
Agent Management (agent
or ag
)
agent pull
Pull a pre-built agent into your project from the SuperOptiX library. This command has an alias pl
.
Arguments:
- name
- Name of the pre-built agent to add (required)
Options:
- --tier {oracles,genies}
- Agent tier level (default: oracles)
- --force
- Force overwrite if agent already exists
- --verbose
- Show detailed agent information and guidance
agent compile
Compile an agent playbook into executable Python code. This command has an alias co
.
Arguments:
- name
- Name of the agent to compile (optional if using --all)
Options:
- --tier {oracles,genies}
- Override playbook tier for compilation
- --all
- Compile all agents in the project
- --abstracted
- Use abstracted pipeline with SuperOptixPipeline base class
- --verbose
- Show detailed guidance and feature explanations
agent design
Interactively design an agent. This command has an alias de
.
Arguments:
- agent
- Name of the agent to design (required)
Options:
- --tier
- Specify the agent tier for the designer
agent inspect
Show detailed information and metadata about an agent. This command has an alias in
.
Arguments:
- name
- Name of the agent to inspect (required)
agent lint
Validate agent playbooks for syntax and best practices. This command has an alias li
.
Arguments:
- name
- Name of the agent to lint (optional if using --all)
Options:
- --all
- Lint all agents in the project
agent list
List all agents in the project or pre-built agents available. This command has aliases ls
and ps
.
Options:
- --pre-built
- List all available pre-built agents from the library
- --industry
- Filter pre-built agents by industry
agent optimize
Optimize an agent pipeline using DSPy optimization techniques. This command has an alias op
.
Arguments:
- name
- Name of the agent to optimize (required)
Options:
- --force
- Force re-optimization even if an optimized version already exists.
- --verbose
- Show detailed guidance and optimization information
agent evaluate
Evaluate an agent using its BDD specification tests. This command has an alias ev
.
Arguments:
- name
- Name of the agent to evaluate (required)
Options:
- --auto-tune
- Enable auto-tuning for evaluation metrics
- --ignore-checks
- Ignore non-essential checks during testing
- --verbose, -v
- Show detailed results for each BDD specification
- --format {table,json,junit}
- Output format for test results (default: table)
- --save-report FILE
- Save detailed test report to a file
agent run
Execute an agent with a specific goal. This command has an alias ru
.
Arguments:
- name
- Name of the agent to run (required)
- --goal
- Goal description for the agent (required)
Options:
- --verbose
- Show detailed execution information and guidance
agent rm
Remove an agent from your project.
Arguments:
- name
- Name of the agent to remove (required)
This command will prompt for confirmation before deleting the agent's playbook and compiled pipeline files.
agent tier-status
Show tier status and capabilities of agents in the project. This command has an alias ts
.
Model Intelligence System (model
or md
)
model list
List SuperOptiX models (installed by default). This command has an alias ls
.
Options:
- --backend {ollama,mlx,huggingface,lmstudio}
- Filter by backend
- --size {tiny,small,medium,large}
- Filter by size
- --task {chat,code,reasoning,embedding}
- Filter by task
- --installed-only
- Show only installed models (default)
- --all
- Show all available models
- --verbose, -v
- Show detailed information
model discover
Show SuperOptiX Model Discovery Guide. This command has an alias disc
.
model guide
Show SuperOptiX Model Installation Guide. This command has an alias g
.
model install
Install a SuperOptiX model. This command has an alias i
.
Arguments:
- model_name
- Model name to install (required)
Options:
- --backend, -b {ollama,mlx,huggingface,lmstudio}
- Specify backend
model run
Run a prompt against a SuperOptiX model with automatic installation.
Arguments:
- model_name
- Name of the model to run (required)
- prompt
- Prompt to send to the model (required)
Options:
- --backend, -b {ollama,mlx,huggingface}
- Backend to use (auto-detected if not specified)
- --interactive, -i
- Run in interactive mode
- --max-tokens, -m
- Maximum tokens to generate (default: 2048)
- --temperature, -t
- Temperature for generation 0.0-2.0 (default: 0.7)
Features: - Auto-installation: Automatically installs models if not found - Backend auto-detection: Finds the correct backend for the model - Interactive mode: Supports conversation mode with history - Real-time execution: Direct model execution without server setup
Supported Backends:
- Ollama: Uses ollama run
command
- MLX: Downloads and uses MLX-LM directly
- HuggingFace: Downloads and uses transformers pipeline directly
- LM Studio: Not supported (designed for server mode)
Examples:
# Single prompt execution
super model run llama3.2:3b "Write a Python function to add two numbers" --backend ollama
# Interactive mode
super model run llama3.2:3b "" --backend ollama --interactive
# Auto-detection with auto-installation
super model run mlx-community/Llama-3.2-3B-Instruct-4bit "Write a hello world program" --backend mlx
# HuggingFace with auto-installation
super model run microsoft/phi-1_5 "Write a simple calculator" --backend huggingface
model remove
Remove a model from a specific backend.
Arguments:
- model_name
- Name of the model to remove (required)
Options:
- --backend, -b {ollama,mlx,huggingface,lmstudio}
- Backend to remove from (auto-detected if not specified)
--all-backends
- Remove from all backends where it exists
Features: - Auto-backend detection: Automatically finds the backend containing the model - Intelligent removal: Removes model files and cache entries - Cross-backend support: Works with all supported backends - Safe removal: Confirms model existence before removal
Examples:
# Remove from specific backend
super model remove llama3.2:3b --backend ollama
# Remove from all backends
super model remove llama3.2:3b --all-backends
# Force removal
super model remove llama3.2:3b
model refresh
Refresh the SuperOptiX model cache.
Description: Updates the local cache of available models by querying all backends and rebuilding the internal model registry.
Use cases: - After manually installing models outside of SuperOptiX - When models are deleted manually - To resolve cache inconsistencies - After backend updates or changes
Example:
model info
Get detailed information about a SuperOptiX model. This command has an alias inf
.
Arguments:
- model_name
- Model name to get info about (required)
model backends
Show SuperOptiX backend status. This command has an alias b
.
model dspy
Create DSPy client for SuperOptiX model. This command has an alias d
.
Arguments:
- model_name
- Model name for DSPy client (required)
Options:
- --temperature, -t
- Temperature for generation (default: 0.7)
- --max-tokens, -m
- Maximum tokens (default: 2048)
model server
Start local server for SuperOptiX models. This command has an alias srv
.
Arguments:
- backend
- Backend type (mlx, huggingface, lmstudio)
- model_name
- Model name to start server for (required)
Options:
- --port, -p
- Port to run server on (default varies by backend)
Examples:
# Start MLX server
super model server mlx mlx-community/Llama-3.2-3B-Instruct-4bit --port 8000
# Start HuggingFace server
super model server huggingface microsoft/Phi-4 --port 8001
# Start LM Studio server
super model server lmstudio llama-3.2-1b-instruct --port 1234
model convert
Convert HuggingFace model to MLX format (EXPERIMENTAL). This command has an alias c
.
Arguments:
- hf_model
- HuggingFace model to convert (e.g., 'microsoft/phi-2')
Options:
- --output, -o
- Output path for converted model (default: model name)
- --quantize, -q
- Generate a quantized model
- --bits
- Bits per weight for quantization (default: 4)
- --group-size
- Group size for quantization (default: 64)
- --quant-recipe
- Mixed quantization recipe (mixed_2_6, mixed_3_4, mixed_3_6, mixed_4_6)
- --dtype
- Data type (float16, bfloat16, float32)
- --upload
- HuggingFace repo to upload converted model to
- --dequantize
- Dequantize a quantized model
- --trust-remote-code
- Trust remote code from HuggingFace
Note: This command is experimental and requires MLX backend to be available.
model quantize
Quantize or dequantize an MLX model (EXPERIMENTAL). This command has an alias q
.
Arguments:
- model_name
- MLX model to quantize (required)
Options:
- --output, -o
- Output path for quantized model
- --bits
- Bits per weight for quantization (default: 4)
- --group-size
- Group size for quantization (default: 64)
- --recipe
- Mixed quantization recipe (mixed_2_6, mixed_3_4, mixed_3_6, mixed_4_6)
- --dequantize
- Dequantize instead of quantize
Note: This command is experimental and requires MLX backend to be available.
SuperSpec DSL (spec
)
spec generate
Generate agent playbook templates with customizable features. This command has an alias gen
.
Arguments:
- tier
- Agent tier: oracles or genies (required)
- name
- Agent name (required)
Options:
- --namespace
- Agent namespace (default: software)
- --role
- Agent role description (default: Assistant)
- --description
- Detailed agent description
- --output
- Output directory or file path
- --format
- Output format: yaml or json (default: yaml)
- --memory/--no-memory
- Enable/disable memory system (Genie only, default: true)
- --tools/--no-tools
- Enable/disable tool integration (Genie only, default: true)
- --rag
- Enable RAG/retrieval (Genie only, default: false)
spec validate
Validate agent playbook files. This command has an alias val
.
Arguments:
- files
- One or more playbook files to validate (required)
Options:
- --verbose, -v
- Show detailed validation output
- --format {table,json}
- Output format (default: table)
spec analyze
Get insights about your playbooks. This command has an alias an
.
Arguments:
- path
- Directory or file path to analyze (required)
Options:
- --pattern
- File pattern to match (default: *.yaml)
- --format {table,json}
- Output format (default: table)
spec info
Show detailed agent information. This command has an alias inf
.
Arguments:
- file
- Agent playbook file (required)
spec schema
Show DSL schema information. This command has an alias sch
.
Options:
- --tier {oracles,genies}
- Show features for specific tier
spec bootstrap
Bootstrap agents for a namespace. This command has an alias boot
.
Arguments:
- namespace
- Target namespace (required)
Options:
- --output-dir
- Output directory (default: ./generated_agents)
- --tiers
- Tiers to generate (default: both oracles and genies)
Orchestra Management (orchestra
or orch
)
orchestra create
Create a new orchestra definition file. This command has an alias cr
.
Arguments:
- name
- Name of the orchestra to create (required)
Options:
- --verbose
- Show detailed orchestra configuration and guidance
orchestra list
List all orchestras in the project. This command has an alias ls
.