Skip to content

Multi-Framework Quick Start

**Build and optimize AI agents across multiple major frameworks** Choose from DSPy, OpenAI SDK, CrewAI, Google ADK, Microsoft, or DeepAgents

🎯 What You'll Build

Learning Outcomes

By the end of this guide, you'll have:

  • ✅ A fully functional AI agent in your chosen framework
  • ✅ Automated evaluation with RSpec-style BDD scenarios
  • ✅ GEPA optimization with proven improvements
  • ✅ Production-ready agent deployment

📋 Requirements

🖥️ Hardware

Component Requirement
GPU RAM 16GB recommended for optimization
System RAM 8GB+ recommended
Network Stable internet connection for model downloads

🐍 Software

Software Version
Python 3.11 or higher
Ollama For local LLMs

Windows Users

Set PYTHONUTF8=1 to ensure proper UTF-8 encoding support:

set PYTHONUTF8=1


📦 Installation

Stable Release Available

SuperOptiX is now available as a stable release.

Git Required

Git is required for installation. Verify: git --version

Install Git:

  • macOS: xcode-select --install
  • Linux: sudo apt-get install git
  • Windows: Download Git

Framework-Free Core

SuperOptiX core is now framework-independent! Install only what you need.

Choose your framework(s) and install SuperOptiX:

pip install superoptix
Includes: CLI tools, SuperSpec DSL, YAML processing, DSPy

Use for: GEPA optimization, DSPy pipelines, evaluation

pip install superoptix[frameworks-dspy]
Includes: SuperOptiX core + DSPy + GEPA

⚠️ Cannot be installed with CrewAI (json-repair conflict)

pip install superoptix[frameworks-openai]
Includes: openai-agents, openai SDK

pip install superoptix[frameworks-google]
Includes: google-adk, google-generativeai

Setup API Key:

export GOOGLE_API_KEY=your-google-api-key

pip install superoptix[frameworks-microsoft]
Includes: agent-framework, azure-identity

pip install superoptix[frameworks-deepagents]
Includes: deepagents

pip install superoptix[frameworks-crewai]
Includes: crewai

⚠️ Cannot be installed with DSPy (json-repair conflict)

pip install superoptix[frameworks]
Includes: DSPy, OpenAI SDK, Google ADK, Microsoft, DeepAgents

Excludes: CrewAI (due to DSPy conflict)

pip install superoptix[frameworks,mcp]
Includes: DSPy-compatible frameworks + MCP SDK

pip install superoptix[all]
Includes: DSPy + compatible frameworks + vector DBs + observability

Excludes: CrewAI

First Execution

The first execution of super commands may take a few seconds as Python compiles bytecodes.


🚀 Step 1: Initialize Project

# Create a new project
super init my_first_agent
cd my_first_agent

Project Structure

This creates a standard project structure:

my_first_agent/
├── agents/          # Agent playbooks
├── pipelines/       # Compiled agents
├── evals/          # Evaluation results
└── optimizers/     # Optimization data

🎨 Step 2: Choose Your Framework and Pull an Agent

Framework Support

SuperOptiX supports multiple major frameworks. Choose the one that fits your needs:

# DSPy: Stanford research framework
super agent pull sentiment_analyzer

Best for: Complex reasoning, research, multiple optimizable variables

Status: Proven GEPA optimization results

# OpenAI SDK: Simple and fast
super agent pull assistant_openai

Best for: Simple agents, fast prototyping

Status: Proven GEPA optimization results

# CrewAI: Multi-agent collaboration
super agent pull researcher_crew

Best for: Multi-agent teams, role-based agents

Status: Proven GEPA optimization results

# Google ADK: Gemini 2.0 native
super agent pull assistant_adk

Best for: Gemini integration, free tier available

Status: Ready for optimization

# Microsoft: Enterprise Azure
super agent pull assistant_microsoft

Best for: Enterprise Azure integration

Status: Ready for optimization

# DeepAgents: Complex planning
super agent pull research_agent_deepagents

Best for: LangGraph planning, advanced reasoning

Status: Ready for optimization

Browse All Agents

# See all pre-built agents
super market browse agents

# List demo agents
super agent list --pre-built

🔧 Step 3: Compile the Agent

# Compile for your chosen framework
super agent compile <agent_name>

# Example: DSPy
super agent compile sentiment_analyzer

# Example: OpenAI SDK
super agent compile assistant_openai

Compilation Output

This generates framework-specific Python code in the pipelines/ directory.


📊 Step 4: Evaluate Performance

# Run baseline evaluation
super agent evaluate <agent_name>

# Example
super agent evaluate sentiment_analyzer

Evaluation Output

You'll see baseline results showing:

Evaluation Results:
==================
Pass Rate: X% (scenarios passed/total)
Average Score: X.X/10

🧬 Step 5: Optimize with GEPA

The Magic Step

GEPA (Genetic-Pareto) automatically improves your agent's performance!

🌟 The Universal Optimizer

Framework Support

  • ✅ Works on ALL frameworks (DSPy, OpenAI SDK, CrewAI, Google ADK, Microsoft, DeepAgents)
  • ✅ Proven optimization results across frameworks
  • ✅ Sample efficient: Works with minimal training scenarios
  • ✅ Framework-agnostic: Same command for all frameworks!
# GEPA works on ALL frameworks! Same command!
super agent optimize <agent_name> --auto medium

# Examples:
super agent optimize sentiment_analyzer --auto medium        # DSPy
super agent optimize assistant_openai --auto medium          # OpenAI SDK
super agent optimize researcher_crew --auto medium           # CrewAI
super agent optimize assistant_adk --auto medium             # Google ADK
super agent optimize assistant_microsoft --auto medium       # Microsoft
super agent optimize research_agent_deepagents --auto medium # DeepAgents

⚙️ Optimization Levels

Level Best For
light Quick iteration, prototyping
medium Most use cases (Recommended)
intensive Critical production agents

API Usage

Optimization makes multiple LLM API calls. Monitor your usage if using cloud models. Works great with Ollama (local, free)!


📈 Step 6: Re-evaluate to See Improvement

# Evaluate optimized version
super agent evaluate <agent_name>  # automatically loads optimized weights

See the Improvements

You'll see improvements in:

Evaluation Results (Optimized):
================================
Pass Rate: Improved ⬆️
Average Score: Improved ⬆️

The optimized agent automatically loads the improved weights from GEPA optimization!


🎯 Step 7: Run Your Optimized Agent

# Run the optimized agent
super agent run <agent_name>

# Example with custom input
super agent run sentiment_analyzer \
  --input "This product exceeded all my expectations!"

🔄 Complete Example Workflow

Full DSPy Sentiment Analyzer Workflow

Here's the complete end-to-end workflow:

# 1. Initialize
super init sentiment_project
cd sentiment_project

# 2. Pull agent
super agent pull sentiment_analyzer

# 3. Compile
super agent compile sentiment_analyzer

# 4. Baseline evaluation
super agent evaluate sentiment_analyzer

# 5. Optimize with GEPA
super agent optimize sentiment_analyzer --auto medium

# 6. Re-evaluate (automatically loads optimized weights)
super agent evaluate sentiment_analyzer

# 7. Run your optimized agent
super agent run sentiment_analyzer

🎓 What's Next?

Congratulations!

You've just built, evaluated, and optimized your first AI agent with SuperOptiX!

📚 Learn More

Resource Description
Multi-Framework Guide Compare all supported frameworks
GEPA Optimization Deep dive into optimization
SuperSpec DSL Build custom agents
Evaluation & Testing Advanced testing strategies

🔄 Try Different Frameworks

Explore Other Frameworks

# Try OpenAI SDK
super agent pull assistant_openai
super agent compile assistant_openai
super agent evaluate assistant_openai
super agent optimize assistant_openai --auto medium

# Try CrewAI
super agent pull researcher_crew
super agent compile researcher_crew
super agent evaluate researcher_crew
super agent optimize researcher_crew --auto medium

🎨 Build Custom Agents

Create Your Own Agent

Create your own agent with SuperSpec:

# my_agent_playbook.yaml
apiVersion: agent/v1
kind: AgentSpec
metadata:
  name: my_custom_agent
spec:
  target_framework: dspy  # or openai, crewai, google-adk, microsoft, deepagents
  language_model:
    provider: ollama
    model: llama3.1:8b
  persona:
    role: Data Analyst
    goal: Analyze data and provide insights
  feature_specifications:
    scenarios:
      - name: Basic analysis
        input:
          data: "Sales data for Q1"
        expected_output:
          analysis: "Comprehensive analysis"

Then compile and optimize:

super agent compile my_custom_agent
super agent evaluate my_custom_agent
super agent optimize my_custom_agent --auto medium

🆘 Troubleshooting

❓ Common Issues

Installation fails

Solution: Try using pip install superoptix[all] or check Python version with python --version (must be 3.11+)

Optimization fails

Solution: Check that you have sufficient GPU RAM and Ollama is running with ollama list

No improvement after optimization

Solution: Ensure your RSpec-style BDD scenarios are well-defined and provide clear success criteria

💬 Get Help

Support Resources


✅ Summary

What You've Accomplished

Skill Status
Install SuperOptiX ✅ Complete
Initialize a project ✅ Complete
Choose from multiple frameworks ✅ Complete
Compile agents ✅ Complete
Evaluate performance ✅ Complete
Optimize with GEPA ✅ Complete
Deploy to production ✅ Complete

Ready to Build More?

Check out our Guides for in-depth tutorials!