Multi-Framework Quick Start
🎯 What You'll Build
Learning Outcomes
By the end of this guide, you'll have:
- ✅ A fully functional AI agent in your chosen framework
- ✅ Automated evaluation with RSpec-style BDD scenarios
- ✅ GEPA optimization with proven improvements
- ✅ Production-ready agent deployment
📋 Requirements
🖥️ Hardware
| Component | Requirement |
|---|---|
| GPU RAM | 16GB recommended for optimization |
| System RAM | 8GB+ recommended |
| Network | Stable internet connection for model downloads |
🐍 Software
| Software | Version |
|---|---|
| Python | 3.11 or higher |
| Ollama | For local LLMs |
Windows Users
Set PYTHONUTF8=1 to ensure proper UTF-8 encoding support:
set PYTHONUTF8=1
📦 Installation
Stable Release Available
SuperOptiX is now available as a stable release.
Git Required
Git is required for installation. Verify: git --version
Install Git:
- macOS:
xcode-select --install - Linux:
sudo apt-get install git - Windows: Download Git
Framework-Free Core
SuperOptiX core is now framework-independent! Install only what you need.
Choose your framework(s) and install SuperOptiX:
pip install superoptix
Use for: GEPA optimization, DSPy pipelines, evaluation
pip install superoptix[frameworks-dspy]
⚠️ Cannot be installed with CrewAI (json-repair conflict)
pip install superoptix[frameworks-openai]
pip install superoptix[frameworks-google]
Setup API Key:
export GOOGLE_API_KEY=your-google-api-key
pip install superoptix[frameworks-microsoft]
pip install superoptix[frameworks-deepagents]
pip install superoptix[frameworks-crewai]
⚠️ Cannot be installed with DSPy (json-repair conflict)
pip install superoptix[frameworks]
Excludes: CrewAI (due to DSPy conflict)
pip install superoptix[frameworks,mcp]
pip install superoptix[all]
Excludes: CrewAI
First Execution
The first execution of super commands may take a few seconds as Python compiles bytecodes.
🚀 Step 1: Initialize Project
# Create a new project
super init my_first_agent
cd my_first_agent
Project Structure
This creates a standard project structure:
my_first_agent/
├── agents/ # Agent playbooks
├── pipelines/ # Compiled agents
├── evals/ # Evaluation results
└── optimizers/ # Optimization data
🎨 Step 2: Choose Your Framework and Pull an Agent
Framework Support
SuperOptiX supports multiple major frameworks. Choose the one that fits your needs:
# DSPy: Stanford research framework
super agent pull sentiment_analyzer
Best for: Complex reasoning, research, multiple optimizable variables
Status: Proven GEPA optimization results
# OpenAI SDK: Simple and fast
super agent pull assistant_openai
Best for: Simple agents, fast prototyping
Status: Proven GEPA optimization results
# CrewAI: Multi-agent collaboration
super agent pull researcher_crew
Best for: Multi-agent teams, role-based agents
Status: Proven GEPA optimization results
# Google ADK: Gemini 2.0 native
super agent pull assistant_adk
Best for: Gemini integration, free tier available
Status: Ready for optimization
# Microsoft: Enterprise Azure
super agent pull assistant_microsoft
Best for: Enterprise Azure integration
Status: Ready for optimization
# DeepAgents: Complex planning
super agent pull research_agent_deepagents
Best for: LangGraph planning, advanced reasoning
Status: Ready for optimization
Browse All Agents
# See all pre-built agents
super market browse agents
# List demo agents
super agent list --pre-built
🔧 Step 3: Compile the Agent
# Compile for your chosen framework
super agent compile <agent_name>
# Example: DSPy
super agent compile sentiment_analyzer
# Example: OpenAI SDK
super agent compile assistant_openai
Compilation Output
This generates framework-specific Python code in the pipelines/ directory.
📊 Step 4: Evaluate Performance
# Run baseline evaluation
super agent evaluate <agent_name>
# Example
super agent evaluate sentiment_analyzer
Evaluation Output
You'll see baseline results showing:
Evaluation Results:
==================
Pass Rate: X% (scenarios passed/total)
Average Score: X.X/10
🧬 Step 5: Optimize with GEPA
The Magic Step
GEPA (Genetic-Pareto) automatically improves your agent's performance!
🌟 The Universal Optimizer
Framework Support
- ✅ Works on ALL frameworks (DSPy, OpenAI SDK, CrewAI, Google ADK, Microsoft, DeepAgents)
- ✅ Proven optimization results across frameworks
- ✅ Sample efficient: Works with minimal training scenarios
- ✅ Framework-agnostic: Same command for all frameworks!
# GEPA works on ALL frameworks! Same command!
super agent optimize <agent_name> --auto medium
# Examples:
super agent optimize sentiment_analyzer --auto medium # DSPy
super agent optimize assistant_openai --auto medium # OpenAI SDK
super agent optimize researcher_crew --auto medium # CrewAI
super agent optimize assistant_adk --auto medium # Google ADK
super agent optimize assistant_microsoft --auto medium # Microsoft
super agent optimize research_agent_deepagents --auto medium # DeepAgents
⚙️ Optimization Levels
| Level | Best For |
|---|---|
light |
Quick iteration, prototyping |
medium |
Most use cases (Recommended) |
intensive |
Critical production agents |
API Usage
Optimization makes multiple LLM API calls. Monitor your usage if using cloud models. Works great with Ollama (local, free)!
📈 Step 6: Re-evaluate to See Improvement
# Evaluate optimized version
super agent evaluate <agent_name> # automatically loads optimized weights
See the Improvements
You'll see improvements in:
Evaluation Results (Optimized):
================================
Pass Rate: Improved ⬆️
Average Score: Improved ⬆️
The optimized agent automatically loads the improved weights from GEPA optimization!
🎯 Step 7: Run Your Optimized Agent
# Run the optimized agent
super agent run <agent_name>
# Example with custom input
super agent run sentiment_analyzer \
--input "This product exceeded all my expectations!"
🔄 Complete Example Workflow
Full DSPy Sentiment Analyzer Workflow
Here's the complete end-to-end workflow:
# 1. Initialize
super init sentiment_project
cd sentiment_project
# 2. Pull agent
super agent pull sentiment_analyzer
# 3. Compile
super agent compile sentiment_analyzer
# 4. Baseline evaluation
super agent evaluate sentiment_analyzer
# 5. Optimize with GEPA
super agent optimize sentiment_analyzer --auto medium
# 6. Re-evaluate (automatically loads optimized weights)
super agent evaluate sentiment_analyzer
# 7. Run your optimized agent
super agent run sentiment_analyzer
🎓 What's Next?
Congratulations!
You've just built, evaluated, and optimized your first AI agent with SuperOptiX!
📚 Learn More
| Resource | Description |
|---|---|
| Multi-Framework Guide | Compare all supported frameworks |
| GEPA Optimization | Deep dive into optimization |
| SuperSpec DSL | Build custom agents |
| Evaluation & Testing | Advanced testing strategies |
🔄 Try Different Frameworks
Explore Other Frameworks
# Try OpenAI SDK
super agent pull assistant_openai
super agent compile assistant_openai
super agent evaluate assistant_openai
super agent optimize assistant_openai --auto medium
# Try CrewAI
super agent pull researcher_crew
super agent compile researcher_crew
super agent evaluate researcher_crew
super agent optimize researcher_crew --auto medium
🎨 Build Custom Agents
Create Your Own Agent
Create your own agent with SuperSpec:
# my_agent_playbook.yaml
apiVersion: agent/v1
kind: AgentSpec
metadata:
name: my_custom_agent
spec:
target_framework: dspy # or openai, crewai, google-adk, microsoft, deepagents
language_model:
provider: ollama
model: llama3.1:8b
persona:
role: Data Analyst
goal: Analyze data and provide insights
feature_specifications:
scenarios:
- name: Basic analysis
input:
data: "Sales data for Q1"
expected_output:
analysis: "Comprehensive analysis"
Then compile and optimize:
super agent compile my_custom_agent
super agent evaluate my_custom_agent
super agent optimize my_custom_agent --auto medium
🆘 Troubleshooting
❓ Common Issues
Installation fails
Solution: Try using pip install superoptix[all] or check Python version with python --version (must be 3.11+)
Optimization fails
Solution: Check that you have sufficient GPU RAM and Ollama is running with ollama list
No improvement after optimization
Solution: Ensure your RSpec-style BDD scenarios are well-defined and provide clear success criteria
💬 Get Help
Support Resources
- 📖 Documentation: https://superoptix.ai/docs
- 🐛 GitHub Issues: https://github.com/SuperagenticAI/SuperOptiX/issues
- 🌐 Website: https://superoptix.ai
✅ Summary
What You've Accomplished
| Skill | Status |
|---|---|
| Install SuperOptiX | ✅ Complete |
| Initialize a project | ✅ Complete |
| Choose from multiple frameworks | ✅ Complete |
| Compile agents | ✅ Complete |
| Evaluate performance | ✅ Complete |
| Optimize with GEPA | ✅ Complete |
| Deploy to production | ✅ Complete |
Ready to Build More?
Check out our Guides for in-depth tutorials!