Skip to content

SuperQuantX Backend Documentation

Overview

SuperQuantX provides a unified API that works across all major quantum computing platforms. This documentation covers all supported backends and their specific features.

Supported Backends

Gate-Model Quantum Computers

1. PennyLane Backend

Device Name: 'pennylane', 'pl', 'penny' Provider: Xanadu Quantum Technologies Type: Quantum Machine Learning focused framework

import superquantx as sqx

# Basic usage
qnn = sqx.QuantumNN(backend='pennylane', device='default.qubit')

# With specific device
backend = sqx.get_backend('pennylane', device='lightning.qubit', shots=1000)

Features: - Automatic differentiation for quantum circuits - Extensive ML library integration - Support for multiple hardware providers through PennyLane plugins - Optimized for variational quantum algorithms

Supported Devices: - default.qubit: CPU simulator - lightning.qubit: Fast C++ simulator
- strawberryfields.fock: Continuous-variable quantum computing - Hardware devices via plugins (IBM, Rigetti, etc.)

2. Qiskit Backend

Device Name: 'qiskit', 'qk', 'ibm' Provider: IBM Quantum Type: Gate-model quantum circuits

# Local simulator
qsvm = sqx.QuantumSVM(backend='qiskit', device='aer_simulator')

# IBM hardware (requires IBM account)
backend = sqx.get_backend('qiskit', 
                         device='ibmq_manila',  # Specific IBM device
                         hub='ibm-q',
                         group='open', 
                         project='main')

Features: - Direct access to IBM Quantum Network - Advanced noise modeling - Quantum circuit transpilation and optimization - Extensive gate set and circuit control

Supported Devices: - aer_simulator: Local quantum simulator - statevector_simulator: Statevector simulation - ibmq_*: IBM quantum hardware (e.g., ibmq_manila, ibmq_bogota)

3. Cirq Backend

Device Name: 'cirq', 'google' Provider: Google Quantum AI Type: NISQ-focused quantum circuits

# Local simulator
qaoa = sqx.QAOA(backend='cirq', device='cirq_simulator')

# Google hardware (requires access)
backend = sqx.get_backend('cirq', device='weber', project_id='your-project')

Features: - Google Quantum AI hardware access - NISQ algorithm optimization - Advanced circuit scheduling - Native support for Google's quantum processors

Supported Devices: - cirq_simulator: Local Cirq simulator - weber, rainbow, sycamore: Google quantum processors (requires access)

4. AWS Braket Backend ⭐ NEW

Device Name: 'braket', 'aws', 'amazon' Provider: Amazon Web Services Type: Multi-vendor quantum access

# Local simulator
backend = sqx.get_backend('braket', device='local:braket/braket_sv')

# IonQ hardware via AWS
backend = sqx.get_backend('braket', 
                         device='arn:aws:braket::device/qpu/ionq/ionQdevice',
                         s3_folder=('my-bucket', 'quantum-results'))

# Rigetti hardware via AWS  
backend = sqx.get_backend('braket', 
                         device='arn:aws:braket::device/qpu/rigetti/Aspen-M-3')

Features: - Access to multiple quantum hardware providers - Managed simulators with high performance - Automatic result storage in S3 - Pay-per-use pricing model

Supported Devices: - local:braket/braket_sv: Local state vector simulator - IonQ trapped-ion processors - Rigetti superconducting processors
- D-Wave quantum annealers (via Braket)

5. TKET/Quantinuum Backend ⭐ NEW

Device Name: 'tket', 'quantinuum', 'pytket', 'h1', 'h2' Provider: Quantinuum/Cambridge Quantum Computing Type: Advanced compilation + trapped-ion hardware

# Local simulator
backend = sqx.get_backend('tket', device='aer_simulator')

# Quantinuum H1-1E hardware
backend = sqx.get_backend('quantinuum', 
                         device='H1-1E',
                         api_key='your-quantinuum-key')

# With circuit optimization
circuit = backend.create_circuit(4)
optimized = backend.optimize_circuit(circuit, optimization_level=3)

Features: - Advanced quantum circuit compilation and optimization - Direct access to Quantinuum H-Series trapped-ion systems - Industry-leading gate fidelities - Sophisticated error mitigation

Supported Devices: - H1-1E: 20-qubit trapped-ion processor - H1-2E: 56-qubit trapped-ion processor
- H2-1: 32-qubit second-generation system - Various simulators through TKET

Quantum Annealing Systems

6. D-Wave Ocean Backend ⭐ NEW

Device Name: 'ocean', 'dwave', 'annealing' Provider: D-Wave Systems Type: Quantum annealing for optimization

# Simulated annealing
backend = sqx.get_backend('ocean', device='simulator')

# D-Wave Advantage hardware
backend = sqx.get_backend('dwave', 
                         device='advantage',
                         token='your-dwave-token')

# Solve optimization problem
Q = {(0, 0): -1, (1, 1): -1, (0, 1): 2}  # QUBO formulation
result = backend.solve_qubo(Q, num_reads=1000)

Features: - Quantum annealing for optimization problems - QUBO and Ising model solving - Hybrid classical-quantum algorithms - Large problem sizes (5000+ variables)

Supported Problems: - Quadratic Unconstrained Binary Optimization (QUBO) - Ising model problems - Maximum Cut, TSP, portfolio optimization - Constrained optimization via penalty methods

Backend Comparison

Backend Hardware Access Max Qubits Specialization Cost Model
PennyLane Multi-vendor Varies Quantum ML Provider-dependent
Qiskit IBM Quantum 127+ General purpose IBM pricing
Cirq Google Quantum 70+ NISQ algorithms Google Cloud
Braket Multi-vendor Varies Cloud access AWS pay-per-use
Quantinuum H-Series 56 High fidelity Premium pricing
D-Wave Advantage 5000+ Optimization Annealing-specific

Advanced Usage

Backend Auto-Selection

# Automatically select best available backend
backend = sqx.get_backend('auto')

# Custom preference order
for backend_name in ['quantinuum', 'braket', 'pennylane']:
    try:
        backend = sqx.get_backend(backend_name)
        break
    except ImportError:
        continue

Multi-Backend Benchmarking

backends = ['pennylane', 'qiskit', 'cirq', 'braket']
results = {}

for backend_name in backends:
    try:
        qnn = sqx.QuantumNN(backend=backend_name, n_layers=2)
        qnn.fit(X_train, y_train)
        accuracy = qnn.score(X_test, y_test)
        results[backend_name] = accuracy
    except Exception as e:
        results[backend_name] = f"Error: {e}"

print("Cross-platform results:", results)

Hardware-Specific Optimization

# TKET advanced optimization
tket_backend = sqx.get_backend('tket')
circuit = tket_backend.create_circuit(4)
# ... add gates ...
optimized_circuit = tket_backend.optimize_circuit(circuit, optimization_level=3)

# D-Wave problem-specific solving
ocean_backend = sqx.get_backend('ocean')
# Max Cut problem
import networkx as nx
G = nx.complete_graph(4)
result = ocean_backend.solve_max_cut(G, num_reads=1000)

Installation Requirements

Core Backends (Included)

  • PennyLane: pip install pennylane
  • Qiskit: pip install qiskit
  • Cirq: pip install cirq

New Backends (Additional Install)

# AWS Braket
pip install amazon-braket-sdk boto3

# TKET/Quantinuum  
pip install pytket pytket-quantinuum

# D-Wave Ocean
pip install dwave-ocean-sdk dwave-system

Authentication Setup

IBM Quantum

from qiskit import IBMQ
IBMQ.save_account('your-ibm-token')

AWS Braket

aws configure  # Set up AWS credentials

Quantinuum

# API key passed directly to backend
backend = sqx.get_backend('quantinuum', api_key='your-key')

D-Wave

# Set environment variable
export DWAVE_API_TOKEN='your-dwave-token'

Error Handling

All backends include graceful error handling:

# Check backend availability
available = sqx.list_available_backends()
print("Available backends:", available)

# Validate specific backend
compatibility = sqx.check_backend_compatibility('quantinuum')
if compatibility['compatible']:
    backend = sqx.get_backend('quantinuum')
else:
    print("Issue:", compatibility['reason'])

Research Applications

For SuperXLab Research

  • Cross-platform validation: Test quantum algorithms on all major platforms
  • Hardware comparison: Benchmark quantum advantages across different architectures
  • Quantinuum H-Series: Direct access for trapped-ion research
  • D-Wave optimization: Quantum annealing for complex optimization problems
  • Multi-vendor access: AWS Braket provides access to multiple hardware types

This unified backend system enables comprehensive quantum computing research across the entire landscape of available quantum hardware and simulators.