Skip to content

Amazon Braket Backend Integration

Amazon Braket is AWS's fully managed quantum computing service that provides access to quantum computers from multiple hardware providers. SuperQuantX integrates with Braket to enable cloud-based quantum computing with enterprise-grade security and scalability.

Overview

The Amazon Braket backend in SuperQuantX provides:

  • Multi-Vendor Hardware Access: IonQ, Rigetti, Oxford Quantum Computing, and more
  • Cloud-Scale Simulation: High-performance quantum simulators
  • Enterprise Integration: AWS IAM, VPC, and compliance features
  • Hybrid Algorithms: Classical-quantum workload orchestration
  • Cost Management: Pay-per-use pricing with detailed billing

Installation

# Install SuperQuantX with Braket support
pip install superquantx[braket]

# Or install Amazon Braket SDK directly
pip install amazon-braket-sdk boto3

AWS Setup

Configure AWS Credentials

# Option 1: AWS CLI
aws configure
# Enter your AWS Access Key ID, Secret Access Key, and region

# Option 2: Environment variables
export AWS_ACCESS_KEY_ID=your-access-key
export AWS_SECRET_ACCESS_KEY=your-secret-key
export AWS_DEFAULT_REGION=us-west-2

IAM Permissions

Create IAM policy with required Braket permissions:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "braket:*",
                "s3:GetObject",
                "s3:PutObject",
                "s3:ListBucket",
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "*"
        }
    ]
}

Quick Start

Basic Usage

import superquantx as sqx

# Get Braket backend (uses local simulator by default)
backend = sqx.get_backend('braket')
print(f"Backend: {backend}")

# Create Bell state circuit
circuit = backend.create_circuit(2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure_all()

# Execute on local simulator
result = backend.run(circuit, shots=1000)
print(f"Bell state results: {result.get_counts()}")

Cloud Simulation

# Use AWS cloud simulators
backend = sqx.BraketBackend(
    device_arn='arn:aws:braket:::device/quantum-simulator/amazon/sv1',
    s3_bucket='my-braket-bucket',
    s3_prefix='my-experiments',
    shots=1000
)

result = backend.run(circuit, shots=1000)
print(f"Cloud simulation results: {result.get_counts()}")

Quantum Hardware Access

# Access IonQ quantum computer
ionq_backend = sqx.BraketBackend(
    device_arn='arn:aws:braket:::device/qpu/ionq/ionQdevice',
    s3_bucket='my-braket-bucket',
    s3_prefix='ionq-experiments',
    shots=100  # Reduced shots for cost control
)

# Execute on real quantum hardware
try:
    result = ionq_backend.run(circuit, shots=100)
    print(f"IonQ hardware results: {result.get_counts()}")
except Exception as e:
    print(f"Hardware execution requires active device: {e}")

Device Selection

Available Devices

def list_braket_devices():
    """List all available Braket devices."""

    try:
        from braket.aws import AwsDevice
        from braket.device_schema import DeviceActionType

        print("Available Amazon Braket Devices:")
        print("=" * 40)

        # Get all devices
        devices = AwsDevice.get_devices()

        # Group by provider
        providers = {}
        for device in devices:
            provider = device.provider_name
            if provider not in providers:
                providers[provider] = []
            providers[provider].append(device)

        for provider, device_list in providers.items():
            print(f"\n{provider}:")
            for device in device_list:
                status = "ONLINE" if device.is_available else "OFFLINE"
                device_type = device.type.value

                print(f"  {device.name} ({device_type}): {status}")
                print(f"    ARN: {device.arn}")

                # Show device properties
                if hasattr(device, 'properties'):
                    props = device.properties
                    if hasattr(props, 'paradigm'):
                        if hasattr(props.paradigm, 'qubitCount'):
                            print(f"    Qubits: {props.paradigm.qubitCount}")
                        if hasattr(props.paradigm, 'connectivity'):
                            connectivity = props.paradigm.connectivity
                            if hasattr(connectivity, 'fullyConnected'):
                                if connectivity.fullyConnected:
                                    print(f"    Connectivity: Fully connected")
                                else:
                                    print(f"    Connectivity: Limited")

                print()

    except ImportError:
        print("Braket device listing requires: pip install amazon-braket-sdk")
    except Exception as e:
        print(f"Error listing devices: {e}")

list_braket_devices()

Device-Specific Configuration

def configure_for_device(device_type='simulator'):
    """Configure backend for specific device types."""

    if device_type == 'ionq':
        return sqx.BraketBackend(
            device_arn='arn:aws:braket:::device/qpu/ionq/ionQdevice',
            s3_bucket='my-braket-bucket',
            s3_prefix='ionq-jobs',
            shots=100,  # Cost control
            max_parallel_threads=1
        )

    elif device_type == 'rigetti':
        return sqx.BraketBackend(
            device_arn='arn:aws:braket:::device/qpu/rigetti/Aspen-M-3',
            s3_bucket='my-braket-bucket', 
            s3_prefix='rigetti-jobs',
            shots=1000,
            poll_timeout_seconds=86400  # 24 hours for queue
        )

    elif device_type == 'sv1':
        # State vector simulator (up to 34 qubits)
        return sqx.BraketBackend(
            device_arn='arn:aws:braket:::device/quantum-simulator/amazon/sv1',
            s3_bucket='my-braket-bucket',
            s3_prefix='sv1-jobs',
            shots=0  # Exact simulation
        )

    elif device_type == 'tn1':
        # Tensor network simulator (up to 50 qubits)
        return sqx.BraketBackend(
            device_arn='arn:aws:braket:::device/quantum-simulator/amazon/tn1',
            s3_bucket='my-braket-bucket',
            s3_prefix='tn1-jobs',
            shots=1000
        )

    else:
        # Local simulator
        return sqx.BraketBackend(
            device_arn='local:braket/braket.devices.LocalSimulator',
            shots=1000
        )

# Test different devices
devices = ['simulator', 'sv1', 'tn1']
for device in devices:
    try:
        backend = configure_for_device(device)
        print(f"✅ {device} backend configured successfully")
    except Exception as e:
        print(f"❌ {device} configuration failed: {e}")

Working with Circuits

Native Braket Gates

def demonstrate_braket_gates():
    """Show Braket-native gate operations."""

    backend = sqx.get_backend('braket')

    # Create circuit with native Braket gates
    circuit = backend.create_circuit(4)

    # Single-qubit gates
    circuit.h(0)           # Hadamard
    circuit.x(1)           # Pauli-X
    circuit.y(2)           # Pauli-Y
    circuit.z(3)           # Pauli-Z

    # Rotation gates
    import numpy as np
    circuit.rx(np.pi/4, 0) # Rx rotation
    circuit.ry(np.pi/3, 1) # Ry rotation
    circuit.rz(np.pi/6, 2) # Rz rotation

    # Phase gates
    circuit.s(0)           # S gate
    circuit.t(1)           # T gate

    # Two-qubit gates
    circuit.cx(0, 1)       # CNOT
    circuit.cz(1, 2)       # Controlled-Z
    circuit.swap(2, 3)     # SWAP

    # Parametric gates
    circuit.phaseshift(np.pi/4, 0)  # Phase shift

    # Add measurements
    circuit.measure_all()

    # Execute circuit
    result = backend.run(circuit, shots=1000)
    print(f"Braket gates demonstration: {result.get_counts()}")

    return circuit

demo_circuit = demonstrate_braket_gates()

Advanced Circuit Features

def braket_advanced_circuits():
    """Demonstrate advanced Braket circuit features."""

    from braket.circuits import Circuit
    from braket.circuits.gates import *
    import numpy as np

    print("Advanced Braket Circuit Features")
    print("=" * 35)

    # 1. Parameterized circuits
    def create_parameterized_ansatz(params, n_qubits=4, depth=2):
        """Create parameterized ansatz for VQE."""
        circuit = Circuit()

        param_idx = 0

        # Initial layer
        for i in range(n_qubits):
            circuit.ry(params[param_idx], i)
            param_idx += 1

        # Entangling layers
        for layer in range(depth):
            # Two-qubit gates
            for i in range(n_qubits - 1):
                circuit.cnot(i, i + 1)

            # Parameterized single-qubit gates
            for i in range(n_qubits):
                circuit.ry(params[param_idx], i)
                param_idx += 1
                circuit.rz(params[param_idx], i)
                param_idx += 1

        return circuit

    # Generate parameters
    n_params = 4 + 2 * 2 * 4  # Initial + depth * 2 * qubits
    params = np.random.random(n_params) * 2 * np.pi

    ansatz = create_parameterized_ansatz(params)
    print(f"Parameterized ansatz created with {n_params} parameters")

    # 2. Noise modeling
    def add_noise_to_circuit(circuit):
        """Add noise to circuit."""
        from braket.circuits.noises import *

        noisy_circuit = circuit.copy()

        # Add depolarizing noise after each gate
        for instruction in circuit.instructions:
            if len(instruction.target) == 1:  # Single-qubit gate
                qubit = instruction.target[0]
                noisy_circuit.depolarizing(qubit, probability=0.001)
            elif len(instruction.target) == 2:  # Two-qubit gate
                for qubit in instruction.target:
                    noisy_circuit.depolarizing(qubit, probability=0.005)

        return noisy_circuit

    # Create test circuit and add noise
    test_circuit = Circuit()
    test_circuit.h(0).cnot(0, 1).ry(np.pi/4, 0)

    noisy_circuit = add_noise_to_circuit(test_circuit)
    print(f"Added noise to circuit with {len(test_circuit.instructions)} instructions")

    # 3. Result types
    def demonstrate_result_types():
        """Show different measurement result types."""
        from braket.circuits import observables

        circuit = Circuit()
        circuit.h(0).cnot(0, 1)

        # Probability measurement
        circuit.probability(target=[0, 1])

        # Expectation value measurement
        circuit.expectation(observable=observables.Z(), target=0)

        # Variance measurement
        circuit.variance(observable=observables.X(), target=0)

        # Sample measurement (default)
        circuit.sample(observable=observables.Z(), target=[0, 1])

        return circuit

    result_circuit = demonstrate_result_types()
    print(f"Circuit with multiple result types created")

braket_advanced_circuits()

Cost Management

Cost Estimation

def estimate_braket_costs():
    """Estimate costs for different Braket services."""

    print("Amazon Braket Cost Estimation")
    print("=" * 32)

    # Current pricing (as of 2024 - check AWS for latest)
    pricing = {
        'sv1': {
            'per_task': 0.075,  # $0.075 per task
            'per_shot': 0.00019  # $0.00019 per shot
        },
        'tn1': {
            'per_task': 0.275,  # $0.275 per task  
            'per_shot': 0.00019  # $0.00019 per shot
        },
        'dm1': {
            'per_task': 0.075,
            'per_shot': 0.00019
        },
        'ionq': {
            'per_task': 0.00,   # Included in shot pricing
            'per_shot': 0.01    # $0.01 per shot
        },
        'rigetti': {
            'per_task': 0.00375,  # $0.00375 per task
            'per_shot': 0.00035   # $0.00035 per shot
        }
    }

    # Example workloads
    workloads = {
        'Development': {'tasks': 100, 'shots_per_task': 1000},
        'Research': {'tasks': 50, 'shots_per_task': 5000},
        'Production': {'tasks': 20, 'shots_per_task': 10000}
    }

    for workload_name, workload in workloads.items():
        print(f"\n{workload_name} Workload:")
        print(f"  Tasks: {workload['tasks']}")
        print(f"  Shots per task: {workload['shots_per_task']}")
        print(f"  Total shots: {workload['tasks'] * workload['shots_per_task']:,}")

        print(f"\n  Cost estimates:")

        for device, prices in pricing.items():
            task_cost = workload['tasks'] * prices['per_task']
            shot_cost = workload['tasks'] * workload['shots_per_task'] * prices['per_shot']
            total_cost = task_cost + shot_cost

            print(f"    {device:8}: ${total_cost:8.2f} "
                  f"(${task_cost:.2f} tasks + ${shot_cost:.2f} shots)")

estimate_braket_costs()

Cost Optimization

def optimize_braket_usage():
    """Demonstrate cost optimization strategies."""

    print("Braket Cost Optimization Strategies")
    print("=" * 38)

    # Strategy 1: Use local simulator for development
    def development_workflow():
        """Use free local simulator for development."""
        local_backend = sqx.BraketBackend(
            device_arn='local:braket/braket.devices.LocalSimulator',
            shots=10000  # No cost for shots
        )

        print("✅ Strategy 1: Use local simulator for development")
        print("   - Free execution")
        print("   - Fast iteration")
        print("   - Good for circuit testing")

        return local_backend

    # Strategy 2: Optimize shot counts
    def optimize_shots(circuit, target_accuracy=0.01):
        """Determine optimal shot count for accuracy."""
        # Rough estimate: std_error = 1/sqrt(shots)
        # For 1% accuracy: 1/sqrt(shots) = 0.01 -> shots = 10,000

        optimal_shots = int(1 / (target_accuracy ** 2))

        print(f"✅ Strategy 2: Optimize shot counts")
        print(f"   - Target accuracy: {target_accuracy:.1%}")
        print(f"   - Recommended shots: {optimal_shots:,}")

        return min(optimal_shots, 100000)  # Cap at 100k for cost control

    # Strategy 3: Batch multiple circuits
    def batch_circuits(circuits):
        """Batch multiple circuits to reduce task overhead."""
        print(f"✅ Strategy 3: Batch circuits")
        print(f"   - {len(circuits)} circuits in one task")
        print(f"   - Reduces task-based charges")
        print(f"   - Better resource utilization")

        # In practice, you would submit all circuits together
        return circuits

    # Strategy 4: Choose appropriate simulators
    def choose_simulator(n_qubits, circuit_depth):
        """Choose most cost-effective simulator."""

        recommendations = []

        if n_qubits <= 25 and circuit_depth <= 100:
            recommendations.append(("SV1", "Fast and cost-effective"))

        if n_qubits <= 50:
            recommendations.append(("TN1", "Handles larger circuits"))

        if n_qubits <= 17:  # Density matrix limit
            recommendations.append(("DM1", "Supports noise modeling"))

        print(f"✅ Strategy 4: Choose appropriate simulator")
        print(f"   Circuit: {n_qubits} qubits, depth {circuit_depth}")

        for sim, desc in recommendations:
            print(f"   - {sim}: {desc}")

        return recommendations[0][0] if recommendations else "Local"

    # Strategy 5: Monitor costs
    def setup_cost_monitoring():
        """Set up cost monitoring and alerts."""
        print(f"✅ Strategy 5: Cost monitoring")
        print(f"   - Use AWS Cost Explorer")
        print(f"   - Set up billing alerts")
        print(f"   - Tag resources for tracking")
        print(f"   - Regular cost reviews")

    # Example usage
    development_workflow()
    print()

    shots = optimize_shots(None, target_accuracy=0.02)  # 2% accuracy
    print()

    test_circuits = [f"circuit_{i}" for i in range(5)]
    batch_circuits(test_circuits)
    print()

    best_sim = choose_simulator(n_qubits=15, circuit_depth=50)
    print()

    setup_cost_monitoring()

optimize_braket_usage()

Hybrid Algorithms

Classical-Quantum Integration

def braket_hybrid_algorithm_example():
    """Demonstrate hybrid classical-quantum algorithm."""

    from braket.circuits import Circuit
    from braket.circuits.gates import *
    import numpy as np
    from scipy.optimize import minimize

    print("Hybrid Algorithm: VQE with Braket")
    print("=" * 35)

    class BraketVQE:
        """Variational Quantum Eigensolver using Braket."""

        def __init__(self, hamiltonian, backend_arn='local:braket/braket.devices.LocalSimulator'):
            self.hamiltonian = hamiltonian  # List of (coeff, pauli_string) tuples
            self.backend = sqx.BraketBackend(device_arn=backend_arn)
            self.n_qubits = len(hamiltonian[0][1])  # Length of Pauli string

        def create_ansatz(self, params):
            """Create variational ansatz circuit."""
            circuit = Circuit()

            param_idx = 0

            # Initial Y rotations
            for i in range(self.n_qubits):
                circuit.ry(params[param_idx], i)
                param_idx += 1

            # Entangling layer
            for i in range(self.n_qubits - 1):
                circuit.cnot(i, i + 1)

            # Final rotations
            for i in range(self.n_qubits):
                circuit.ry(params[param_idx], i)
                param_idx += 1
                circuit.rz(params[param_idx], i)
                param_idx += 1

            return circuit

        def measure_pauli_expectation(self, circuit, pauli_string):
            """Measure expectation value of Pauli string."""
            # Convert Pauli string to measurements
            measurement_circuit = circuit.copy()

            # Add basis rotations for X and Y measurements
            for i, pauli in enumerate(pauli_string):
                if pauli == 'X':
                    measurement_circuit.ry(-np.pi/2, i)  # Rotate Y basis to Z
                elif pauli == 'Y':
                    measurement_circuit.rx(np.pi/2, i)   # Rotate X basis to Z
                # Z measurements need no rotation

            # Add measurements
            for i in range(self.n_qubits):
                measurement_circuit.sample(observable=observables.Z(), target=i)

            # Execute circuit
            result = self.backend.run(measurement_circuit, shots=1000)

            # Calculate expectation value (simplified)
            # In practice, you'd need to properly handle the measurement results
            # This is a placeholder for the actual calculation
            return np.random.random() * 2 - 1  # Random value in [-1, 1]

        def compute_energy(self, params):
            """Compute energy expectation value."""
            ansatz = self.create_ansatz(params)

            energy = 0.0
            for coeff, pauli_string in self.hamiltonian:
                expectation = self.measure_pauli_expectation(ansatz, pauli_string)
                energy += coeff * expectation

            return energy

        def optimize(self, initial_params=None, method='COBYLA', maxiter=100):
            """Optimize VQE parameters."""
            if initial_params is None:
                n_params = 2 * self.n_qubits + self.n_qubits  # RY + RY + RZ
                initial_params = np.random.random(n_params) * 2 * np.pi

            print(f"Starting VQE optimization...")
            print(f"  Hamiltonian terms: {len(self.hamiltonian)}")
            print(f"  Parameters: {len(initial_params)}")
            print(f"  Optimizer: {method}")

            def cost_function(params):
                energy = self.compute_energy(params)
                print(f"    Energy: {energy:.6f}")
                return energy

            result = minimize(
                cost_function,
                initial_params,
                method=method,
                options={'maxiter': maxiter}
            )

            return result

    # Example: H2 molecule Hamiltonian
    h2_hamiltonian = [
        (-1.0523732, 'II'),  # Identity
        (0.39793742, 'ZI'),  # Z on qubit 0
        (-0.39793742, 'IZ'), # Z on qubit 1
        (-0.01128010, 'ZZ'), # Z on both qubits
        (0.18093119, 'XX')   # X on both qubits
    ]

    # Run VQE
    vqe = BraketVQE(h2_hamiltonian)

    # Optimize (using fewer iterations for demo)
    result = vqe.optimize(maxiter=5)

    print(f"\nVQE Results:")
    print(f"  Ground state energy: {result.fun:.6f}")
    print(f"  Optimization success: {result.success}")
    print(f"  Function evaluations: {result.nfev}")

    # Compare with classical result
    classical_energy = -1.8  # Approximate H2 ground state
    quantum_energy = result.fun

    if abs(quantum_energy - classical_energy) < 0.1:
        print(f"✅ Quantum result close to classical expectation")
    else:
        print(f"⚠️  Quantum result differs from classical (normal for demo)")

braket_hybrid_algorithm_example()

Error Handling and Monitoring

Robust Job Management

def braket_job_management():
    """Demonstrate robust Braket job management."""

    import time
    from braket.aws import AwsDevice
    from braket.circuits import Circuit

    print("Braket Job Management")
    print("=" * 22)

    class RobustBraketExecutor:
        """Robust executor with error handling and retries."""

        def __init__(self, device_arn, s3_bucket, max_retries=3):
            self.device_arn = device_arn
            self.s3_bucket = s3_bucket
            self.max_retries = max_retries
            self.job_history = []

        def submit_with_retry(self, circuit, shots=1000, job_name=None):
            """Submit job with automatic retry logic."""

            for attempt in range(self.max_retries):
                try:
                    print(f"Attempt {attempt + 1}: Submitting job...")

                    backend = sqx.BraketBackend(
                        device_arn=self.device_arn,
                        s3_bucket=self.s3_bucket,
                        s3_prefix=f'attempt_{attempt}',
                        shots=shots
                    )

                    start_time = time.time()
                    result = backend.run(circuit, shots=shots)
                    execution_time = time.time() - start_time

                    # Record successful job
                    job_info = {
                        'attempt': attempt + 1,
                        'status': 'success',
                        'execution_time': execution_time,
                        'shots': shots,
                        'timestamp': time.time()
                    }
                    self.job_history.append(job_info)

                    print(f"✅ Job completed successfully in {execution_time:.2f}s")
                    return result

                except Exception as e:
                    error_info = {
                        'attempt': attempt + 1,
                        'status': 'failed',
                        'error': str(e),
                        'timestamp': time.time()
                    }
                    self.job_history.append(error_info)

                    print(f"❌ Attempt {attempt + 1} failed: {e}")

                    if attempt < self.max_retries - 1:
                        wait_time = 2 ** attempt  # Exponential backoff
                        print(f"   Waiting {wait_time}s before retry...")
                        time.sleep(wait_time)
                    else:
                        print(f"   Max retries exceeded. Job failed.")
                        raise e

        def get_job_statistics(self):
            """Get job execution statistics."""
            if not self.job_history:
                return {"message": "No jobs executed yet"}

            successful_jobs = [j for j in self.job_history if j['status'] == 'success']
            failed_jobs = [j for j in self.job_history if j['status'] == 'failed']

            stats = {
                'total_jobs': len(self.job_history),
                'successful_jobs': len(successful_jobs),
                'failed_jobs': len(failed_jobs),
                'success_rate': len(successful_jobs) / len(self.job_history) * 100,
            }

            if successful_jobs:
                execution_times = [j['execution_time'] for j in successful_jobs]
                stats['avg_execution_time'] = np.mean(execution_times)
                stats['total_execution_time'] = np.sum(execution_times)

            return stats

    # Example usage
    executor = RobustBraketExecutor(
        device_arn='local:braket/braket.devices.LocalSimulator',
        s3_bucket='my-braket-experiments'  # Would be real S3 bucket
    )

    # Create test circuit
    test_circuit = Circuit()
    test_circuit.h(0).cnot(0, 1)

    # Submit job with retry logic
    try:
        result = executor.submit_with_retry(test_circuit, shots=1000)
        print(f"Job result: {len(result.get_counts() if hasattr(result, 'get_counts') else {})} outcomes")
    except Exception as e:
        print(f"Final job failure: {e}")

    # Get statistics
    stats = executor.get_job_statistics()
    print(f"\nJob Statistics:")
    for key, value in stats.items():
        print(f"  {key}: {value}")

braket_job_management()

Best Practices

Security and Compliance

def braket_security_best_practices():
    """Demonstrate Braket security best practices."""

    print("Braket Security Best Practices")
    print("=" * 32)

    practices = [
        {
            "category": "IAM and Access Control",
            "practices": [
                "Use least-privilege IAM policies",
                "Rotate access keys regularly", 
                "Use IAM roles for service-to-service access",
                "Enable CloudTrail for API logging",
                "Use VPC endpoints for private access"
            ]
        },
        {
            "category": "Data Protection",
            "practices": [
                "Encrypt S3 buckets with KMS",
                "Use secure S3 bucket policies",
                "Enable S3 versioning for data recovery",
                "Clean up intermediate results",
                "Avoid storing sensitive data in circuits"
            ]
        },
        {
            "category": "Cost Control",
            "practices": [
                "Set up billing alerts",
                "Use resource tags for cost tracking",
                "Implement circuit validation before submission",
                "Monitor queue times and costs",
                "Use simulators for development"
            ]
        },
        {
            "category": "Development Workflow",
            "practices": [
                "Test circuits locally first",
                "Use version control for quantum code",
                "Implement proper error handling",
                "Monitor job success rates",
                "Document quantum algorithms and parameters"
            ]
        }
    ]

    for category_info in practices:
        print(f"\n{category_info['category']}:")
        for i, practice in enumerate(category_info['practices'], 1):
            print(f"  {i}. {practice}")

    # Example secure configuration
    print(f"\nExample Secure Configuration:")
    print(f"```python")
    print(f"backend = sqx.BraketBackend(")
    print(f"    device_arn='arn:aws:braket:::device/quantum-simulator/amazon/sv1',")
    print(f"    s3_bucket='my-secure-braket-bucket-{{region}}-{{account}}',")
    print(f"    s3_prefix='quantum-experiments/{{project}}/{{date}}',")
    print(f"    kms_key='arn:aws:kms:region:account:key/key-id',")
    print(f"    shots=1000,")
    print(f"    tags={{'Project': 'QuantumML', 'Owner': 'TeamName'}}")
    print(f")")
    print(f"```")

braket_security_best_practices()

Performance Optimization

def braket_performance_optimization():
    """Optimize performance for Braket workloads."""

    print("Braket Performance Optimization")
    print("=" * 33)

    # 1. Circuit optimization
    def optimize_circuit_for_braket(circuit):
        """Optimize circuit for Braket execution."""

        optimizations = [
            "Reduce circuit depth where possible",
            "Use native gate sets when available", 
            "Minimize measurements",
            "Batch similar circuits together",
            "Pre-validate circuits locally"
        ]

        print("Circuit Optimization:")
        for i, opt in enumerate(optimizations, 1):
            print(f"  {i}. {opt}")

        return circuit

    # 2. Device selection
    def select_optimal_device(circuit_qubits, circuit_depth, budget='medium'):
        """Select optimal device based on circuit characteristics."""

        recommendations = []

        if circuit_qubits <= 12 and budget == 'low':
            recommendations.append(("Local Simulator", "Free, fast for development"))

        if circuit_qubits <= 34:
            recommendations.append(("SV1", "Cost-effective, exact simulation"))

        if circuit_qubits <= 50:
            recommendations.append(("TN1", "Large-scale simulation"))

        if circuit_qubits <= 32 and budget == 'high':
            recommendations.append(("IonQ", "Real quantum hardware"))

        print(f"Device Selection for {circuit_qubits} qubits, depth {circuit_depth}:")
        for device, desc in recommendations:
            print(f"  ✅ {device}: {desc}")

        return recommendations[0][0] if recommendations else "Local Simulator"

    # 3. Execution strategies
    def execution_strategies():
        """Different execution strategies for various use cases."""

        strategies = {
            "Development": {
                "device": "Local Simulator",
                "shots": 10000,
                "validation": "Extensive local testing"
            },
            "Research": {
                "device": "SV1 or TN1",
                "shots": 5000,
                "validation": "Cloud simulation validation"
            },
            "Production": {
                "device": "Quantum Hardware",
                "shots": 1000,
                "validation": "Full pipeline testing"
            }
        }

        print("Execution Strategies:")
        for strategy, config in strategies.items():
            print(f"  {strategy}:")
            for key, value in config.items():
                print(f"    {key}: {value}")
            print()

    # Example optimization workflow
    optimize_circuit_for_braket(None)
    print()

    best_device = select_optimal_device(circuit_qubits=16, circuit_depth=20)
    print()

    execution_strategies()

braket_performance_optimization()

Resources and Support

Documentation and Learning

def braket_resources():
    """Comprehensive Braket resources and support."""

    resources = {
        "Official Documentation": [
            "AWS Braket Developer Guide",
            "Braket Python SDK Documentation", 
            "Quantum Computing with Amazon Braket",
            "Device-specific documentation"
        ],
        "Learning Materials": [
            "Braket Tutorials and Examples",
            "Quantum Computing Fundamentals",
            "Hybrid Algorithm Patterns",
            "Cost optimization guides"
        ],
        "Community and Support": [
            "AWS Quantum Computing Blog",
            "Braket GitHub Repository",
            "AWS Support (for Enterprise customers)",
            "Quantum computing forums"
        ],
        "Hardware Partner Resources": [
            "IonQ Documentation and API",
            "Rigetti Documentation", 
            "Oxford Quantum Computing",
            "Hardware-specific calibration data"
        ]
    }

    print("Amazon Braket Resources")
    print("=" * 25)

    for category, items in resources.items():
        print(f"\n{category}:")
        for item in items:
            print(f"  • {item}")

    print(f"\nKey Links:")
    print(f"  📖 Docs: https://docs.aws.amazon.com/braket/")
    print(f"  🐍 SDK:  https://github.com/amazon-braket/amazon-braket-sdk-python")
    print(f"  💡 Examples: https://github.com/amazon-braket/amazon-braket-examples")
    print(f"  💰 Pricing: https://aws.amazon.com/braket/pricing/")

braket_resources()

Amazon Braket's integration with SuperQuantX provides enterprise-grade quantum computing capabilities with cloud scalability, multi-vendor hardware access, and robust security features. It's ideal for organizations looking to integrate quantum computing into their existing AWS infrastructure.

Cost Control

Always test circuits on local simulators first, then use cloud simulators, and finally quantum hardware. Use shot optimization and batching to minimize costs.

Hardware Queues

Quantum hardware devices may have significant queue times and limited availability. Plan accordingly and have fallback options.

Enterprise Features

Braket provides enterprise features like VPC support, encryption, compliance certifications, and integration with other AWS services for production quantum computing workflows.