Skip to content

Quick Start Guide

Get up and running with SuperQuantX in just 5 minutes! This guide will take you from installation to running your first quantum program.

📦 Installation

SuperQuantX requires Python 3.10 or higher. Install it using pip:

pip install superquantx

This installs SuperQuantX with the built-in simulator backend.

# For PennyLane integration
pip install superquantx[pennylane]

# For Qiskit integration
pip install superquantx[qiskit]

# For multiple backends
pip install superquantx[pennylane,qiskit]
# Clone the repository
git clone https://github.com/SuperagenticAI/superquantx.git
cd superquantx

# Install with development dependencies
pip install -e .[dev]

🔍 Verify Installation

Let's make sure everything is working:

import superquantx as sqx
print(f"SuperQuantX version: {sqx.__version__}")

# List available backends
backends = sqx.list_available_backends()
print(f"Available backends: {backends}")

You should see something like:

SuperQuantX version: 0.1.1
Available backends: {'simulator': {'available': True, 'class': 'SimulatorBackend', 'description': 'Pure Python quantum simulator backend.', 'capabilities': {...}}, 'pennylane': {'available': False, 'class': 'PennyLaneBackend', 'reason': 'Missing dependencies'}, ...}

🎯 Your First Quantum Program

Let's create a simple quantum circuit that demonstrates quantum superposition:

import superquantx as sqx

# Step 1: Get a quantum backend
backend = sqx.get_backend('simulator')
print(f"Using backend: {backend.device}")

# Step 2: Create a quantum circuit with 2 qubits
circuit = backend.create_circuit(n_qubits=2)

# Step 3: Add quantum gates
circuit = backend.add_gate(circuit, 'H', 0)      # Put qubit 0 in superposition
circuit = backend.add_gate(circuit, 'CNOT', [0, 1])  # Entangle qubits 0 and 1

# Step 4: Measure the qubits
circuit = backend.add_measurement(circuit)

# Step 5: Run the circuit
result = backend.execute_circuit(circuit, shots=1000)

# Step 6: Get the results
counts = result['counts']
print(f"Measurement results: {counts}")

Expected output:

Using backend: simulator
Measurement results: {'00': 496, '11': 504}

🎉 Congratulations! You've just created your first quantum entangled state. Notice how we only get results 00 and 11, never 01 or 10 - this is quantum entanglement in action!

🧠 Your First Quantum Machine Learning Program

Now let's try something more exciting - quantum machine learning:

import superquantx as sqx
import numpy as np
from sklearn.datasets import make_classification

# Step 1: Create a simple binary classification dataset
X, y = make_classification(n_samples=100, n_features=4, n_classes=2, 
                          n_redundant=0, random_state=42)

# Step 2: Split the data
X_train, X_test = X[:80], X[80:]
y_train, y_test = y[:80], y[80:]

# Step 3: Create a Quantum SVM
qsvm = sqx.QuantumSVM(backend='simulator', feature_map='ZFeatureMap')

# Step 4: Train the model
print("Training Quantum SVM...")
qsvm.fit(X_train, y_train)

# Step 5: Make predictions
predictions = qsvm.predict(X_test)
accuracy = qsvm.score(X_test, y_test)

print(f"Quantum SVM Accuracy: {accuracy:.2f}")
print(f"First 5 predictions: {predictions[:5]}")

🎨 Visualizing Your Quantum Circuit

SuperQuantX makes it easy to visualize what your quantum circuits look like:

import superquantx as sqx

# Create a more complex circuit
backend = sqx.get_backend('simulator')
circuit = backend.create_circuit(n_qubits=3)

# Build a quantum circuit
circuit = backend.add_gate(circuit, 'H', 0)           # Hadamard on qubit 0
circuit = backend.add_gate(circuit, 'CNOT', [0, 1])   # CNOT from qubit 0 to 1
circuit = backend.add_gate(circuit, 'RY', 2, [0.5])   # Y-rotation on qubit 2
circuit = backend.add_gate(circuit, 'CZ', [1, 2])     # Controlled-Z gate

# Note: Circuit visualization methods would need to be implemented
# For now, you can examine the circuit structure programmatically
print(f"Circuit has {circuit.n_qubits} qubits")
print(f"Current state vector shape: {circuit.state.shape}")

🔄 Switching Between Quantum Backends

One of SuperQuantX's superpowers is easy backend switching. Let's compare the same algorithm across different frameworks:

import superquantx as sqx
import numpy as np

# Create sample data
X = np.random.rand(50, 2)
y = np.random.randint(0, 2, 50)

# List of backends to compare
backends = ['simulator', 'pennylane', 'qiskit']

results = {}

for backend_name in backends:
    try:
        print(f"\n🔍 Testing with {backend_name}...")

        # Create and train model
        qsvm = sqx.QuantumSVM(backend=backend_name)
        qsvm.fit(X[:40], y[:40])  # Train on first 40 samples

        # Test accuracy
        accuracy = qsvm.score(X[40:], y[40:])  # Test on last 10 samples
        results[backend_name] = accuracy

        print(f"✅ {backend_name} accuracy: {accuracy:.3f}")

    except ImportError as e:
        print(f"❌ {backend_name} not available: {e}")

print(f"\n📊 Results Summary: {results}")

📊 Built-in Quantum Algorithms

SuperQuantX comes with several quantum algorithms ready to use:

import superquantx as sqx
from sklearn.datasets import make_blobs

# Generate data
X, y = make_blobs(n_samples=100, centers=2, random_state=42)

# Create and train Quantum SVM
qsvm = sqx.QuantumSVM(backend='simulator')
qsvm.fit(X, y)

# Evaluate
accuracy = qsvm.score(X, y)
print(f"Training accuracy: {accuracy:.3f}")
import superquantx as sqx
import numpy as np

# Create a simple Hamiltonian (matrix)
hamiltonian = np.array([[1, 0], [0, -1]])

# Find ground state energy
vqe = sqx.VQE(backend='simulator', hamiltonian=hamiltonian)
ground_energy = vqe.find_ground_state()

print(f"Ground state energy: {ground_energy:.6f}")
import superquantx as sqx
import numpy as np

# Create training data
X = np.random.rand(20, 2)
y = np.random.randint(0, 2, 20)

# Build Quantum Neural Network
qnn = sqx.QuantumNN(
    n_qubits=2,
    n_layers=1,
    backend='simulator'
)

# Train the network
qnn.fit(X, y, epochs=5)

# Make predictions
predictions = qnn.predict(X[:5])
print(f"Predictions: {predictions}")

🎯 What's Next?

Great job! You've successfully:

✅ Installed SuperQuantX
✅ Created your first quantum circuit
✅ Ran a quantum machine learning algorithm
✅ Visualized quantum circuits
✅ Compared multiple backends

Continue Your Journey:

  1. Learn the Fundamentals: Basic Quantum Computing Tutorial
  2. Explore More Algorithms: Quantum Algorithms Guide
  3. Deep Dive into Backends: Backend Integration Guide
  4. Try Advanced Examples: Advanced Tutorials

Need Help?


Pro Tip

Start a Jupyter notebook and experiment with the examples above. Quantum computing is best learned by doing!

Remember

SuperQuantX is research software. Use it for learning, experimentation, and research - not for production applications.